当前位置:问答库>考研试题

2017年江西财经大学数理统计(同等学力加试)复试实战预测五套卷

  摘要

一、计算题

1. 从一批产品中抽检100个,发现3个不合格,假定该产品不合格品率的先验分布为贝塔分布Be (2, 200),求的后验分布.

n-x+200). 这里n=100, x=3, 【答案】根据不合格品率的共轭先验可知,的后验分布为Be (x+2,所以,的后验分布为Be (5, 297).

2. 设A ,B 是两事件,且P (A )=0.6,P (B )=0.8,问:

(1)在什么条件下P (AB )取到最大值,最大值是多少? (2)在什么条件下P (AB )取得最小值,最小值是多少? 【答案】(1)因为时,P (AB )的最大值是0.6.

(2)因

而当

时,有P (AB )达到最小值0.4.

3. 设随机变量X 的密度函数为

如果已知E (X )=0.5,试计算【答案】因为

,联立(1)(2)解得a=6,b=-6.由此得

所以

4. 设

其中

试问

是否服从大数定律?

第 2 页,共 27 页

所以当P (AB )=P(A )

所以有

为独立同分布的随机变量序列, 其共同分布为

【答案】因为

由柯西积分判别法知上述级数收敛, 故

存在, 所以由辛钦大数定律知

服从大数定律.

5. 两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件数比第二台加工的零件数多一倍.

(1)求任取一个零件是合格品的概率;

(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率. 【答案】记事件A 为“取到第一台车床加工的零件”,则格品

(1)用全概率公式

(2)用贝叶斯公式

6. 将12个球随意地放入3个盒子中,试求第一个盒子中有3个球的概率.

【答案】将12个球随意放入3个盒子中,所有可能结果共有

个,而事件“第一个盒子中有

种可能;第二

3个球”可分两步来考虑:第一步,12个球中任取3个放在第一个盒子中,这有

又记事件B 为“取到合

步,将余下的9个球随意放入第二个和第三个盒子中,这有29种可能,于是所求概率为

7. 某人参加“答题秀”,一共有问题1和问题2两个问题. 他可以自行决定回答这两个问题的顺序. 如果他先回答一个问题,那么只有回答正确,他才被允许回答另一题. 如果他有60%的把握答对问题1,而答对问题1将获得200元奖励;有80%的把握答对问题2,而答对问题2将获得100元奖励. 问他应该先回答哪个问题,才能使获得奖励的期望值最大化?

【答案】记X 为回答顺序为1,2时,所获得的奖励,则X 的分布列为

1

由此得E (X )=168(元)

又记Y 为回答顺序为2,1时,所获得的奖励,则Y 的分布列为

表2

第 3 页,共 27 页

由此得E (Y )=176(元)

因此应该先回答问题2,可以使获得的奖励的期望值最大.

8. 设随机变量X 的密度函数为件{X≤1/2}出现的次数,试求P (Y=2).

,其中【答案】因为Y 〜b (3,P )

所以

以Y 表示对X 的三次独立重复观察中事

二、证明题

9. 设罐中有b 个黑球、r 个红球,每次随机取出一个球,取出后将原球放回,再加入同色的球. 试证:第k 次取到黑球的概率为

【答案】

设事件设

则显然有

则由全概率公式得

把k 次取球分为两段:第1次取球与后k-1次取球. 当第1次取到黑球时,罐中增加c 个黑球,这时从原罐中第k 次取到黑球等价于从新罐(含b+c个黑球,r 个红球)中第k-1次取到黑球,故有

类似有

所以代入(1)式得

由归纳法知结论成立.

10.设二维随机变量(X , Y )服从单位圆内的均匀分布, 其联合密度函数为

试证:X 与Y 不独立且X 与Y 不相关 【答案】先求边际密度函数

第 4 页,共 27 页

下用归纳法证明.

为“罐中有b 个黑球、r 个红球时,第i 次取到是黑球”,