当前位置:问答库>考研试题

2018年大连海洋大学畜牧学715高等数学Ⅱ之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1.

设矩阵

求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

2.

设二次型

(1)证明二次型f

对应的矩阵为(2

)若

【答案】(1)由题意知,

正交且均为单位向量,证明f

在正交变换下的标准形为

故二次型/

对应的矩阵为(2)证明:

设则

,由于

所以

为矩阵对应特征值

第 2 页,共 41 页

的特征向量;

所以

为矩阵对应特征值

而矩阵A

的秩

故f

在正交变换下的标准形为

3. 已知实二次

的矩阵A ,满

所以

的特征向量; 也是矩阵的一个特征值;

且其

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

满足

的具体表达式.

知矩阵A

有特征值即

是属于A 的特征值

.

与—

j 正交,于是有

的线性无关特征向

显然B 的第1, 2列线性无关

,量,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ

)由于

则由正交变换

化二次型为标准形

第 3 页,共 41 页

故二次型

4. 设n 阶实对称矩阵A

满足

(Ⅰ)求二次型(Ⅱ

)证明[!

【答案】

(Ⅰ)设

由于

从而

的规范形;

且秩

的值.

即或

因为A 是

是正定矩阵,

并求行列式

为矩阵A 的特征值,

对应的特征向量为

又因

故有

解得

实对称矩阵,所以必可对角化,

且秩于是

那么矩阵A 的特征值为:1(k 个),-1(n-k 个).

故二次型

(Ⅱ)因

的规范形为

所以矩阵B 的特征值是

由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,

二、计算题

5. 利用对角线法则计算下列三阶行列式:

(1

第 4 页,共 41 页