当前位置:问答库>考研试题

2017年武汉大学概率论与数理统计复试实战预测五套卷

  摘要

一、计算题

1. 己知

【答案】由条件概率的定义知

其中

再由

可得

2. 在遗传学研宄中经常要从截尾二项分布中抽样,其总体概率函数为

若已知m=2

,

是样本,试求p 的最大似然估计.

的样本中有个为1,

代回原式,可得

【答案】当m=2时,该截尾二项分布只能取1与2, 不妨设个为2,则其似然函数为(忽略常数)

对数似然函数为

将对数似然函数关于p 求导并令其为0得到似然方程

解之得

后一个等式是由于

所以

代入上式即得.

3. 在生产中积累了32组某种铸件在不同腐蚀时间x 下腐蚀深度y 的数据,求得回归方程为

且误差方差的无偏估计为(1)对回归方程作显著性检验(2)求样本相关系数;

第 2 页,共 29 页

总偏差平方和为0.1246. 列出方差分析表;

(3)若腐蚀时间x=870,试给出y 的0.95近似预测区间. 【答案】(1)由已给条件可以得到因此

把这些平方和移至如下方差分析表上,继续计算

若取显著性水平归方程检验的p 值为

则因此回归方程是显著的,此处,回

这是一个很小的概率,说明回归方程显著性很高. (2)样本相关系数

(3)若腐蚀时间x=870,则y 的预测值为

其0.95近似预测区间的半径为

从而y 的0.95近似预测区间为

4. 设总体为

为样本, 试求常数k , 使得

【答案】

由于Z 取值于(0, 1), 故由题目所给要求有

从而

于是

5. 对下列数据构造茎叶图

【答案】取百位数与十位数组成茎, 个位数为叶, 这组数据的茎叶图如下:

这给出

第 3 页,共 29 页

6. 设二维随机变量(X , Y )的联合密度函数为

求X 与Y 的协方差及相关系数. 【答案】先求X 与Y 的期望与方差

所以

又因为

所以X 与Y 的协方差及相关系数为

7. 某新产品在未来市场上的占有率X 是仅在区间(0,1)上取值的随机变量,它的密度函数为

试求平均市场占有率.

【答案】这里平均市场占有率就是E (X ).

第 4 页,共 29 页