当前位置:问答库>考研试题

2017年山东大学概率论、矩阵代数,各约占1,2,之概率论与数理统计考研复试核心题库

  摘要

一、计算题

1. 设随机变量X 的密度函数为

试求X 的分布函数.

【答案】由于密度函数p (X )在四段设立,具体如下:

,所以其分布函数也要分上分为四段(如图)

综上所述,X 的分布函数为

2. 设总体X

的分布函数为

是来自总体的简单随机样本,(1)求

量;(3)是否存在常数a ,使得对任意的

都有

其中为未知的大于零的参数

;(2)求

的极大似然估计

【答案】(1)由题意,先求出总体X 的概率密度函数

(2)极大似然函数为则当所有的观测值都大于

零时

(3)由于可知

的极大似然估计量为

独立同分布,显然对应的

由辛钦大数定律,

可得

故存在常数

使得对任意的

都有

也独立同分布,又有(1)

再由(1)(2)可知

3. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?

【答案】若检验结果是接受原假设,可能有两种情况:其一是原假设为真,此时检验是正确的,未犯错误,其二是原假设不真,此时检验结果就错了,这种错误是接受了不真的原假设,为第二类错误,故此时检验可能犯第二类错误.

若检验结果是拒绝原假设,也可能有两种情况:若原假设本身不真,检验是正确的;若原假设事实上是真的,则检验就犯了第一类错误,由此,在此种场合,检验可能会犯第一类错误.

4. 有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账. 求以下事件的概率:

(1)进行到了第2轮确定了由谁来付账; (2)进行了3轮还没有确定付账人. 【答案】记X=所掷的轮数,则

所以

其中

1-p=P(重新掷)=P(出现三个正面或出现三个反面)

(1)第2轮确定由谁来付账的概率为

(2)进行了3轮还没有确定付账人的概率为

5. 检查了一本书的100页,记录各页中的印刷错误的个数,其结果如下

1

问能否认为一页的印刷错误个数服从泊松分布(取

).

【答案】这是一个要检验总体是否服从泊松分布的假设检验问题. 由于有几类的观测个数偏少,为使用近似分布,需要把后面四类合并为一类. 于是我们把总体分成4类,在原假设下,每类出现的概率为:

未知参数可采用最大似然方法进行估计,为

将代入可以估计出诸

于是可计算出检验核计量

2

如下表:

取查表知

,故拒绝域

为由

故不拒绝原假设,在显著性水平为0.05下可以认为一页的错字个数是服从

泊松分布的. 此处检验的p 值为

6. 求下列分布函数的特征函数, 并由特征函数求其数学期望和方差.

(1)(2)

【答案】(1

)因为此分布的密度函数为所以此分布的特征函数为