2017年山东大学概率论、矩阵代数,各约占1,2,之概率论与数理统计考研复试核心题库
● 摘要
一、计算题
1. 设随机变量X 的密度函数为
试求X 的分布函数.
【答案】由于密度函数p (X )在四段设立,具体如下:
,所以其分布函数也要分上分为四段(如图)
图
综上所述,X 的分布函数为
2. 设总体X
的分布函数为
是来自总体的简单随机样本,(1)求
量;(3)是否存在常数a ,使得对任意的
都有
其中为未知的大于零的参数
,
;(2)求
的极大似然估计
【答案】(1)由题意,先求出总体X 的概率密度函数
(2)极大似然函数为则当所有的观测值都大于
零时
,
(3)由于可知
令
得
的极大似然估计量为
独立同分布,显然对应的
由辛钦大数定律,
可得
故存在常数
使得对任意的
都有
也独立同分布,又有(1)
再由(1)(2)可知
,
3. 在假设检验问题中,若检验结果是接受原假设,则检验可能犯哪一类错误?若检验结果是拒绝原假设,则又有可能犯哪一类错误?
【答案】若检验结果是接受原假设,可能有两种情况:其一是原假设为真,此时检验是正确的,未犯错误,其二是原假设不真,此时检验结果就错了,这种错误是接受了不真的原假设,为第二类错误,故此时检验可能犯第二类错误.
若检验结果是拒绝原假设,也可能有两种情况:若原假设本身不真,检验是正确的;若原假设事实上是真的,则检验就犯了第一类错误,由此,在此种场合,检验可能会犯第一类错误.
4. 有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账. 求以下事件的概率:
(1)进行到了第2轮确定了由谁来付账; (2)进行了3轮还没有确定付账人. 【答案】记X=所掷的轮数,则
所以
其中
1-p=P(重新掷)=P(出现三个正面或出现三个反面)
(1)第2轮确定由谁来付账的概率为
(2)进行了3轮还没有确定付账人的概率为
5. 检查了一本书的100页,记录各页中的印刷错误的个数,其结果如下
表
1
问能否认为一页的印刷错误个数服从泊松分布(取
).
【答案】这是一个要检验总体是否服从泊松分布的假设检验问题. 由于有几类的观测个数偏少,为使用近似分布,需要把后面四类合并为一类. 于是我们把总体分成4类,在原假设下,每类出现的概率为:
未知参数可采用最大似然方法进行估计,为
将代入可以估计出诸
于是可计算出检验核计量
表
2
如下表:
若
取查表知
,故拒绝域
为由
于
故不拒绝原假设,在显著性水平为0.05下可以认为一页的错字个数是服从
泊松分布的. 此处检验的p 值为
6. 求下列分布函数的特征函数, 并由特征函数求其数学期望和方差.
(1)(2)
【答案】(1
)因为此分布的密度函数为所以此分布的特征函数为
相关内容
相关标签