2017年河北师范大学应用数学概率论复试实战预测五套卷
● 摘要
一、计算题
1. 设随机变量
【答案】因为
所以
偏度系数和峰度系数分别为
2. 己知
【答案】由条件概率的定义知
其中
再由
可得
3. 设随机变量X 的分布函数为
代回原式,可得
,对k=l,2,3,4,求
与
,进一步求
此分布的偏度系数和峰度系数.
试求
【答案】X 的密度函数为
所以
由此得
4. 钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是50%、30%和20%,而掉在上述三处地方被找到的概率分别是0.8、0.3和0.1. 试求找到钥匙的概率.
【答案】记事件
为“钥匙掉在宿舍里”,
为“钥匙掉在教室里”,
为“钥匙掉在路上”,事
5. 设
(2)在
是来自正态分布
的样本.
件B 为“找到钥匙由全概率公式得
(1)在已知时给出的一个充分统计量;
已知时给出的一个充分统计量.
【答案】(1)在已知时, 样本联合密度函数为
令理,
(2)在
为
,
取
的充分统计量.
, 由因子分解定
已知时, 样本联合密度函数为
令, 取
由因子分解定理, 为的充分统计量.
6. 将n 个完全相同的球(这时也称球是不可辨的)随机地放入N 个盒子中,试求:
(1)某个指定的盒子中恰好有k 个球的概率;
(2)恰好有m 个空盒的概率;
(3)某指定的m 个盒子中恰好有j 个球的概率.
【答案】先求样本点总数,我们用N+1根火柴棒排成一行,火柴棒之间的N 个司隔恰好形成N 个盒子,并依次称它们为第1个盒子,第2个盒子,…,第N 个盒子,n 个球用“0”表示,考虑到两端必须是火柴棒方能形成N 个盒子,所以n 个(不可辨)球放入N 个(可辨)盒子中,就相当于把N-1根火柴棒(N+1根火柴棒中去掉两端的两根)和n 个“0”随机地排成一行,譬如N=4, n=3时,“10010111”表示第1个盒子中有2个球、第2个盒子中有1个球、第3、4个盒子中无球,这样一来,n 个球放入N 个盒子所有的样本点总数相当于:从N-1+n个位置任选n 个位置放“0”、其他位置放火柴棒,故样本点总数为
(1)记A 为事件“指定的某个盒子中恰有k 个球”,不失一般性,可认为第1个盒子中有k 个球,则余下n-k 个球放入另外N-1个盒子中,类似于样本点总数的计算,
此种样本点共有
考虑到球不可辨故
(2)记
为事件“恰有m 个空盒”,它的发生可分两步描述:
种取法.
第一步,从N 个盒子任取m 个盒子,共有
第二步,将n 个球放入余下的N_m个盒中,且这N —m 个盒子中都要有球,
这当然要求
:
或
否则第二步发生的概率为零,为了使第二步能发生,我们设想先把n 个
球排成一行,随机抽取球与球之间的n-1个间隔中的N-m-1个间隔放火柴棒即可,这有种可能.
综合上述两步,所求概率为
(3)若事件C 表示“指定的m 个盒子中恰有j 个球”,这意味着另外N-m 个盒子中放n-j 个球,由类似于样本点总数的计算知:j 个球放入m 个盒子中共余下的N-m
个盒子中有
种放法,于是所求概率为
7. 在一时内甲、乙、丙三台机床需维修的概率分别是0.9,0.8和0.85,求一小时内
(1)没有一台机床需要维修的概率;
种放法,而另外n-j 个球放入