当前位置:问答库>考研试题

2018年新疆农业大学林业研究所601大学数学1之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1.

设矩阵

求一个秩为2的方阵B. 使

【答案】

取.

进而解得的另一解为则有

.

的基础解系为:

方阵B 满足题意.

2. 设线性方程

m

【答案】

对线性方程组的增广矩阵

试就讨论方程组的解的悄况,备解时求出其解.

作初等行变换,如下

(1

)当

则方程组有惟一答:

(2)

则方程组有无穷多可得其一个特解

解.

此时原方程组与同解,

解得其基础解系为

故原方程组的通解为

(3

)当

(4

)当

3. 已知实二次

为任意常数. 此时方程组无解. 时

的矩阵A ,满

此时方程组无解.

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

满足

的具体表达式.

知矩阵A

有特征值即

是属于A 的特征值

.

与—

j 正交,于是有

的线性无关特征向

显然B 的第1, 2列线性无关

,量,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ

)由于

则由正交变换

化二次型为标准形

故二次型

4. 已知A 是3阶矩阵,

(Ⅰ)证明

:(Ⅱ

)设

【答案】

(Ⅰ)由同特征值的特征向量,

又令即由

线性无关,得齐次线性方程组

线性无关.

是3维非零列向量,若线性无关;

非零可知,是A 的个

因为系数行列式为范德蒙行列式且其值不为0,

所以必有

线性无关;

(Ⅱ)因为

,

所以

二、计算题