2018年新疆农业大学林业研究所601大学数学1之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
设矩阵
求一个秩为2的方阵B. 使
【答案】
令
即
取.
进而解得的另一解为则有
.
的基础解系为:
方阵B 满足题意.
令
2. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
故原方程组的通解为
(3
)当
(4
)当
3. 已知实二次
型
即
时
为任意常数. 此时方程组无解. 时
的矩阵A ,满
足
且
此时方程组无解.
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
则
与—
j 正交,于是有
令
的线性无关特征向
显然B 的第1, 2列线性无关
,量,从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ
)由于
则由正交变换
故
化二次型为标准形
故二次型
4. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
线性无关,得齐次线性方程组
线性无关.
求
是3维非零列向量,若线性无关;
且
令
非零可知,是A 的个
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
所以
即
故
二、计算题
相关内容
相关标签