2017年北京市培养单位北京基因组研究所803概率论与数理统计考研导师圈点必考题汇编
● 摘要
一、证明题
1. 设总体X 的分布函数F (x )是连续的,
试证:
(1)(2)
(3)和的协方差矩阵为
其中
成立.
且是来自均匀分布U (0, 1)总体的次序统计量:
为取自此总体的次序统计量,
设
【答案】(1)由分布函数F (x )的单调性可知, (0, 1)总体的次序统计量;
(2)是来自均匀分布U (0, 1)总体的次序统计量, 所以, 故
(3)和的联合分布函数为:
又由分布函数F (x )的连续性可知, F (X )服从均匀分布U (0, 1), 故而^是来自均匀分布U
则
所以,
结合(2)可知, 和的协方差矩阵为:
2. 设随机向量(X , Y )满足
证明:【答案】由所以
3. 从同一总体中抽取两个容量分别为mm 的样本, 样本均值分别为
, 将两组样本合并, 其均值、方差分别为
【答案】设取自同一总体的两个样本为由
得
由
得
4. 若P (A )>0,P (B )>0,如果A ,B 相互独立,试证:A ,B 相容.
【答案】因为P (AB )=P(A )P (B )>0,所以
,
样本方差分别为
证明:
即A ,B 相容.
5. 设连续随机变量X 服从柯西分布, 其密度函数如下:
其中参数
(1)试证X 的特征函数为(2)当(3)若
【答案】(1)因为
时, 记Y=X, 试证
的密度函数为
y 的特征函数为
下证柯西分布的可加性, 设
, 由此得服从参数为
的特征函数
的柯西分布, 其密度函数为
若
与
相互独立, 则
的柯西分布的特征函数, 所以由唯一性定理知,
的柯西分布.
(2)当所以
由于Y=X, 当然X 与Y 不独立 此题说明, 由(3
)设得:
即
的特征函数为
不能推得X 与Y 独立.
, 由相互独立性
都服从参数为的柯西分布,
则特征函数为
时有
,
,
服从参
常记为
且利用此结果证明柯西分布的可加性;
, 但是X 与Y 不独立;
与同分布.
相互独立, 且服从同一柯西分布, 试证:
这正是参数为数为
与具有相同的特征函数, 由唯一性定理知它们具有相同的分布.
6. 同时掷5枚骰子,试证明:
(1)P (每枚都不一样)=0.0926; (2)P (一对)=0.4630; (3)P (两对)=0.2315; (4)P (三枚一样)=0_1543; (5)P (四枚一样)=0.0193; (6)P (五枚一样)=0.0008. 【答案】同时掷5枚骰子共有
个样本点,这是分母,以下分别求之.
相关内容
相关标签