2017年辽宁工业大学理学院901高等代数考研导师圈点必考题汇编
● 摘要
一、选择题
1. 设A 、B 、C 均为n 阶矩阵,E 为n 阶单位矩阵,如B=E+AB, C=A+CA, 则B —C 为( ).
A.E B.-E C.A D.-A
【答案】A
【解析】由题设(E-A )B=E, 所以有
B (E-A )=E.
又C (E-A )=A,故
(B-C )(E-A )=E-A.
结合E-A 可逆,得B-C=E.
2. 设向量组线性无关,则下列向量组中,线性无关的是( )
【答案】C 【解析】方法1:令
则有
由
线性无关知,
该方程组只有零解方法2:对向量组C ,由于
从而
线性无关,且
因为
所以向量组
线性无关.
线性无关.
3. 设A 、B 均为2阶矩阵,A*,B*分别为A 、B 的伴随矩阵. 如果阵
A. B. C. D. 【答案】B 【解析】由题设
可逆,由于
的伴随矩阵为( ).
则分块矩
且
所以
4. 下面哪一种变换是线性变换( )
.
【答案】C
【解析】
,而
5. 设次型.
A. B. C. D. 【答案】D
【解析】方法1 用排除法令
则
为任意实数 不等于0 为非正实数 不等于-1
不一定是线性变换,
比如
不是惟一的.
.
则
,
也不是线性变换,
比如给
则当( )时,此时二次型为正定二
这时f (l ,1,1)=0,即f 不是正定的. 从而否定A ,B ,C. 方法2
所以当方法3 设
时,f 为正定二次型.
对应的矩阵为A ,则
A 的3个顺序主子式为
所以当方法4令
时,A 的3个顺序主子式都大于0,则,为正定二次型,故选(D ).
所以f 为正定的.
二、分析计算题
6. 设a ,b 是两个复数,令
那么【答案】是映射. 若
是 单射. 显然
且记
令
故是满射,从而是双射
.
因为
所以
是同构映射,
则
设
于是
那么
故
都是
的子空间,证明:
故
相关内容
相关标签