当前位置:问答库>考研试题

2016年东华大学旭日工商管理学院802运筹学考研导师圈定必考题汇编及答案

  摘要

一、选择题

1. 影子价格实际上是与原问题的各约束条件相联系的( )的数量表现。 A. 决策变量 B. 松弛变量 C. 人工变量 D. 对偶变量 【答案】D

【解析】影子价格是对偶问题的经济解释,实际上影子价格的大小即为对偶变量的大小。 2. 线性规划的最优解有以下几种可能( )。 A. 唯一最优解 B. 多个最优解

C. 没有最优解,因为目标函数无界 D. 没有最优解,因为没有可行解 【答案】ABCD

【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优解,必在某个顶点上 得到,当该顶点唯一时,有唯一最优解; 当目标函数在多个顶点上达到最大值时,则该问题有无限多个最优解; 目标函数无界,称线性规划问题具有无界解,此时无最优解; 使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。

3. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。 A. 最大流 B. 最大割 C. 最小流 D. 最小割 【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

4. 单纯形法求解最大化线性规划问题,如果存在“左端≥右端常数”的约束条件,对此约束条件应引入( )。 A. 可控变量 B. 环境变量 C. 人工变量 D. 松弛变量

【答案】D

【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也可称松弛变量)。

二、填空题

5. 现有m 个约束条件

,若某模型要求在这m 个条件中取”个条件作为约束,用,1

变量来实现 该问题的约束条件组为:_。 【答案】

【解析】0一l 变量取1时取该约束条件,否则不取,又一共取S 个约束条件。则可得到约束条件组为:

6. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。 【答案】

否会发生变化: _____。 【答案】不发生变化

【解析】如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案中各变量的 检验数均不发生变化,所以最优调运方案不发生变化。

8. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:____。 【答案】对偶单纯形法

7. 如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案是

三、证明题

9. 设G=(V ,E )是一个简单圈,令证明:(l )若(2)若

,则G 必有圈; ,则G 必有包含至少

条边的圈。

,假设

(称

为G 的最小次)。

(3)设G 是一个连通图,不含奇点。证明:从G 中丢失任一条边后,得到的图仍是连通图。 【答案】(l )因为G (V ,E )是一个简单圈,故该图中无环,也无重复边。若G 中无圈,则G 可能是树或非连通图,这两种情况均存在悬挂点,即

相矛盾。故假设不成立, 所以,G 必有圈。

(2)若的次至少为

,设与,也至少与

对应的点为v k ,则v k

必与个端点相连。如果v k 与v i

个端点相连。由(l )的结论知,G

个端点不构成圈,那么在端

v k 至少与这中必有圈(由于对圈中的连通图而言,点处必向外延伸(因为最小次为

个端点构成圈)。

, 不与其中某点相连,必与其外某点相连)经连通链而到

另一端点,对该圈而言,边数大于条,故G 必定 是包含不少于占 条边的圈。

(3)证明:因为G 连通且不含奇点,故d (v )=2n,且该图中无悬挂点。由题(l )的结论知,G 必有圈。又因为G 是连通的,所以从G 中去掉任一条边,都必在某一圈中。而从圈中去掉任一条边,所得图仍是连通图。

10.证明:矩阵对策G={S1,S 2; A}在混合策略意义下有解的充要条件是:存在

为函数以

的一个鞍点,即对一切

【答案】(l )先证明充分性 对任意X , Y 均有

,故得出

又所以,

另一方便,对任何X ,Y 有

由不等式①、②

(2)再证必要性。设有X*,Y*,使得

则由

,有

所以对任意X ,Y ,有

综上得证。 11.证明下列定理: (1)设有两个矩阵对策,

,L 为任一常数,则有

(2)设有两个矩阵对策

(3)设则

(定理8) 为矩阵对策,且 ,其中

)和

了为斜对称矩阵(亦称这种对策为对称对策)。分别为局中人I 和

的最优策略集。(定理9)

,其中

。(定理7)

,其中a>0

为任一常数。则

① ,所以得

,有

使