2018年新疆维吾尔自治区培养单位603高等数学(丙)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1. 已知A 是3阶矩阵
,
(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:
(Ⅲ)求秩
【答案】(Ⅰ)由于
令
记
因
则有
线性无关,故P 可逆.
即A 与B 相似.
是3维线性无关列向量,且
(Ⅱ
)由
A 的特征值为-1, -1,-1.
对于矩阵B ,
由
得
所以
可知矩阵B 的特征值为-1, -1,-1, 故矩阵
得特征向量
那么由:
即
是A 的特征向量,于是A 属于特征值-1
的所有特征向量是
全为0.
(Ⅲ
)由
芄中
不
知
故
2.
已知通解是
.
, 证明
【答案】
由解的结构知
是4阶矩阵,其中
是齐次方程组
故秩
是4维列向量. 若齐次方程组Ax=0的的基础解系.
又由
得
因
与
可知综上可知
,
3.
已知
有
即故
都是
的解.
由
线性无关.
由
是
得的基础解系.
那么
其中E
是四阶单位矩阵是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
所以有
专注考研专业课
13年,提供海量考研优质文档!
4. 已知
实二次
型
的矩阵
A ,满足
且
其中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,
B
的每一列
满足
的具体表达式.
知矩阵A 有特征值
即
是属于
A 的特征值
.
则
与
—
j 正交,于是有
令
的线性无关特征向
显然B
的第1
, 2列线性无关
,量,
从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ)由于
则由正交变换
故
化二次型为标准形