当前位置:问答库>考研试题

2018年新疆维吾尔自治区培养单位603高等数学(丙)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1. 设二次

(Ⅰ)用正交变换化二次型(Ⅱ

)求【答案】

(Ⅰ)由

知,矩阵B 的列向量是齐次方程组Ax=0的解向量.

为标准形,并写出所用正交变换;

矩阵A 满足AB=0, 其

值(至少是二重)

根据

值是0, 0, 6.

正交化,

令的特征向量为

则是

的线性无关的特征向量.

由此可知

,是矩阵A 的特征

故知矩阵A

有特征值因此,矩阵A 的特征

那么由实对称矩阵不同特征值的特征向量相互正交,

解出

再对,单位化,得

那么经坐标变换

二次型化为标准形(Ⅱ)因为

所以由

进而

于是

2. 已知A 是3阶矩阵

(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:

(Ⅲ)求秩

【答案】(Ⅰ)由于

则有

线性无关,故P 可逆.

即A 与B 相似.

是3维线性无关列向量,且

(Ⅱ

)由

A 的特征值为-1, -1,-1.

对于矩阵B ,

所以

可知矩阵B 的特征值为-1, -1,-1, 故矩阵

得特征向量

那么由:

是A 的特征向量,于是A 属于特征值-1

的所有特征向量是

全为0.

(Ⅲ

)由

芄中

3.

已知

对角矩阵.

是矩阵的二重特征值,求a 的值,并求正交矩阵Q

使为

【答案】A 是实对称矩阵

可得a=2.

此时

是二重根,

于是

必有两个线性无关的特征向量,

于是

解(2E-A )x=0,

得特征向量将

正交化:

解(8E-A )x=0,

得特征向量先

再将单位化,得正交矩阵:

且有 4.

为三维单位列向量,并且

记证明:

(Ⅰ)齐次线性方程组Ax=0有非零解; (Ⅱ)A

相似于矩阵

故Ax=0有非零解.

(Ⅱ)由(Ⅰ

)知向量.

【答案】(Ⅰ)由于A 为3阶方阵,且

故A

有零特征值

的非零解即为对应的特征