2017年北京林业大学概率论与数理统计复试实战预测五套卷
● 摘要
一、计算题
1. 设总体X
的分布函数为
是来自总体的简单随机样本,(1)求
量;(3)是否存在常数a ,使得对任意的
都有
其中为未知的大于零的参数
,
;(2)求
的极大似然估计
【答案】(1)由题意,先求出总体X 的概率密度函数
(2)极大似然函数为则当所有的观测值都大于
零时
,
(3)由于可知
令
得
的极大似然估计量为
独立同分布,显然对应的
由辛钦大数定律,
可得
故存在常数
使得对任意的
都有
也独立同分布,又有(1)
再由(1)(2)可知
,
2. —个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,其中有k 个白球,求罐子里黑球数和白球数之比R 的最大似然估计.
【答案】解法1 记P 为罐子中白球的比例,令Xi 表示第i 次有放回抽样所得的白球数,
则
,故p 的最大似然估计为
因为黑球数与白球数比值
根据最大似然估计的不变性,有
对具体的样本值即n 个抽到k 个白球来讲,R 的最大似然估计为从中有放回的抽一个球为白球的概率为
从罐中有放回的抽n 个球,可视为从二点分布
表
中抽取一个样本容量为n 的样本. 当样本中有k 个白球时,似然函数为
, 其对数似然函数为InL (R )=(n-k )lnR-nln (1+R)将对数似然函数对R 求导,并令其为0, 得似然方程解之可得
所以
由于其对数似然函数的二阶导数为
是R 的最大似然估计.
即罐中黑球数与白球数之比的最大
解法2 设罐子里有白球1个,则有黑球R1个,从而罐中共有(1+R)1个球.
譬如,在n=10, k=2场合,R 的最大似然估计
似然估计为4, 若白球1个,黑球为4个;或者白球2个,黑球为8个等.
3. 假定电话总机在某单位时间内接到的呼叫次数服从泊松分布,现观测了40个单位时间,接到的呼叫次数如下:
在显著性水平0.05下能否认为该单位时间内平均呼叫次数不低于2.5次?并给出检验的p 值. 【答案】以X 记电话总机在该单位时间内接到的呼叫次数,可认为设为
而
因而,检验的统计量为若取拒绝原假设.
由于u 在成立时,服从标准正态分布,因而检验的p 值为
则
检验的拒绝域为
由于u=—2.1落入拒绝域,故
由于n=40较大,故可以采用大样本检验,泊松分布的均值和方差都是
,则要检验的假
4. 检查三件产品,只区分每件产品是合格品(记为0)与不合格品(记为1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:
【答案】
5. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何?
【答案】设事件A 为“颗骰子掷4次,至少出现一次6点”,则. 为“一颗骰子掷4次,不出现6点”,于是
又设事件B 为“两颗骰子掷24次,至少出现一次双6点”,则瓦为“两颗骰子掷24次,不出现双6点”,于是
从计算结果可以看出:赌徒的感觉是不对的,因为两者的概率相差0.0263,而概率相差0.0263的两个事件,在实际中仅凭感觉很难发现它们的细小差别,只有从理论上才能识别.
6. 盒子里装有3个黑球、2个红球、2个白球,从中任取4个,以X 表示取到黑球的个数,以Y 表示取到红球的个数,试求P (X=Y).
【答案】
7. 对泊松分布P (θ),
(1)求
,使g (θ)的费希尔信息量与θ无关. (2)找一个函数g (•)【答案】⑴(2)所以,
令
(其中为任意常数).
,(其中c 为大于0的任意常数)则
相关内容
相关标签