当前位置:问答库>考研试题

2018年东华理工大学理学院818高等代数考研仿真模拟五套题

  摘要

一、选择题

1. 设A 为常数,则

A. B. C. D. 【答案】C 【解析】由于所以又显然有基础解系.

考虑到

2. 设A 为3阶矩阵,将A 的第2列加到第1列得B ,再交换B 的第2行与第3行得单位矩阵.

A.

B.

C.

D. 【答案】D

【解析】由题设知,所以

3. 设行列式

则A=( ).

是.

的一个特解,所以选C.

(否则与

是非齐次线性方程组是对应齐次线性方程组

有解矛盾),所以

的三个线性无关的解, 的两个线性无关的解.

从而

的一个

矩阵,

是非齐次线性方程组

的3个线性无关的解,

为任意

的通解为( ).

,则方程,

的根的个数为( )

B.2 C.3 D.4 【答案】B

【解析】因为将原行列式的第1列乘(-1)分别加到其他3列得

有两个根

4. 设A 、B 为满足

的任意两个非零矩阵. 则必有( ).

A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设设

由于性相关. 又由方法2:设考虑到

由已知及以上证明知B' 的列线性相关,即B 的行向量组线性相关.

由于

所以有

所以有

可推得AB 的第一列

并记A 各列依次为

从而

线

由于

不妨

故A 的列向量组及B 的行向量组均线性相关. 5. 设均为n 维列向量,A 是矩阵,下列选项正确的是( ).

A. 若B. 若C. 若D. 若【答案】A 【解析】因为当否则有

线性相关,则线性相关,则线性无关,则线性无关,则

线性相关. 线性无关. 线性相关. 线性无关.

线性无关,

线性无关时,若秩

线性相关. 由此可否定C ,D. 又由

专注考研专业课13年,提供海量考研优质文档!

由上述知因此

线性相关,所以线性相关

,故选

A.

于是

二、分析计算题

6. 设P 是数域,

1)证明:旦是数域P

上线性空间(

2

)求在基

下的矩阵

的线性变换

(3)求

的特征值和属于特征值的线性无关的特征向量.

【答案】

(1

由假设知

所以是(2)

. 上线性变换.