2018年西北师范大学物理与电子工程学院621高等数学(含线性代数)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
为任意常数. 此时方程组无解. 时
故原方程组的通解为
(3
)当
(4
)当
2. 设二次
型
(Ⅰ)用正交变换化二次型(Ⅱ
)求
即
时
此时方程组无解.
矩阵A 满足AB=0, 其
中
为标准形,并写出所用正交变换;
【答案】
(Ⅰ)由知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
于是
3.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求
的基础解系.
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
由
知
线性相关,不合题意. 线性无关,可作为三个不同特征
(Ⅱ
)
知
的基础解系,
即为
的特征向量
4.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得