2018年新疆农业大学草业与环境科学学院601大学数学1之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1.
设三维列向量组
(Ⅱ)
当
【答案】(Ⅰ)由于4
个三维列向量全为0
的数
又向量组记
和向量组向量
线性表示.
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
使得
线性无关;
向量组
则
构成的向量组一定线性相关,故存在一组不即,
线性无关,故
不全为0
,
即存在非零列向量
不全为0.
使得
可同时由向量组
线性无关,
列向量组
线性无关.
和向量组
线性表示;
(Ⅰ
)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为
_意非零常数.
因此,
所有非零列向量
所有非零解
_
t 为任
2.
已知其中E
是四阶单位矩阵是四阶矩阵A 的转置矩阵
,
求矩阵A
【答案】
对
作恒等变形,
有即
由
故矩阵可逆.
则有
以下对矩阵做初等变换求逆,
所以有
3.
已知
对角矩阵.
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
是矩阵
的二重特征值,求a 的值,并求正交矩阵Q
使
为
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
再将单位化,得正交矩阵:
且有
4.
已知矩阵
可逆矩阵P ,使
和
试判断矩阵A 和B 是否相似,若相似则求出
若不相似则说明理由.
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是
由矩阵B 的特征多项式
得到矩阵B
的特征值也是
当
时,由秩
知
A 可以相似对角化.
而
有2个线性无关的解,
即
时矩阵A 有2个线性无关的特征向量,矩阵
时矩阵B 只有1个线性无
只有1个线性无关的解,即