2017年解放军信息工程大学070100数学概率论与数理统计考研复试核心题库
● 摘要
一、计算题
1. —批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品. 分别用以下方法求拒收的概率:(1)用二项分布作精确计算;(2)用泊松分布作近似计算.
【答案】记X 为抽取的40件产品中的不合格品数,则
(1)拒收的概率为
(2)因为
所以用泊松分布作近似计算,可得近似值为
可见近似值与精确值相差0.0007,近似效果较好.
2. 若事件
,是否一定有
发生有多种情况,如
而“拒收”
就相当于
【答案】不能,因为
; (1)A ,B ,C 中两两不相容(见图(a ))
; (2)A ,B ,C 中有两个相容,但与第三个都不相容(见图b )); (3)A 与B 相容,A 与C 相容,但B 与C 不相容(见图(c ))(4)A ,B ,C 中两两相容,但其交不含任一样本点(见图(d ))
.
图
3 设总体X 服从几何分布, 即.
为该总体的样本. 分别求【答案】容易看出所以
同样可以得到
此式对k=l也成立, 因为
所以
的分布列为
其中
的概率分布.
可以验证上述分布列满足非负性和正则性两个基本要求. 事实上,
由于
从而
而其和
下面求所以
类似有
所以
的分布列为
的分布列. 由于
所
以
同样可以验证上述分布列满足非负性和正则性两个基本要求. 这里非负性是显然的, 而其和
4. 我们知道营业税税收总额y 与社会商品零售总额x 有关. 为能从社会商品零售总额去预测税收总额,需要了解两者之间的关系. 现收集了如下九组数据(单位:亿元):
表
1
(1)画散点图;
(2)建立一元线性回归方程,并作显著性检验(取区间;
(4)若已知回归直线过原点,试求回归方程,并在显著性水平0.05下作显著性检验. 【答案】(1)散点图如图
,列出方差分析表; )
(3)若已知某年社会商品零售额为300亿元,试给出营业税税收总额的概率为0.95的预测
图
类似的问题我们己经做过多次,此处我们使用MATLAB 统计软件来进行,把数据输入到worksheet 中,在选项stat 中选择regression. 在弹出的对话框中将因变量和自变量选入即可,得到的回归方程为
方差分析表如下:
表
2
根据以上结果,在显著性水平下,回归方程是显著的.
(3)按照(2)的步骤进入regression 对话框,点击options 后,在prediction of new observation中给出自变量x 的值300,就可以得到y 的0.95预测区间为[9.688,14.999].
(4)若想要拟合不带截距的过原点的回归方程,只要在options 中在Fitintercept 选项中不选,即可得到过原点的回归直线为
此时检验的P 值为0.000,因此在显著性水平
下,
过原点的回归方程是显著的.
5. 设二维随机变量(X , Y )的联合密度函数为
求X 与Y 的协方差及相关系数. 【答案】先求X 与Y 的期望与方差
所以
又因为
相关内容
相关标签