2017年新疆大学数学与系统科学学院818高等代数考研冲刺密押题
● 摘要
一、选择题
1. 齐次线性方程组
的系数矩阵为A ,若存在3阶矩阵
【答案】C 【解析】若当C.
2. 二次型
A. 正定 B. 不定 C. 负定 D. 半正定 【答案】B 【解析】方法1
方法2 设二次型矩阵A ,则
是不定二次型,故选B. 是( )二次型.
时,
由AB=0, 用
右乘两边,可得A=0, 这与A 卢)矛盾,从而否定B. ,D.
由AB=0,左乘
可得
矛盾,从而否定A ,故选
使AB=0, 则( )
.
由于因此否定A ,C ,A 中有二阶主子式
从而否定D ,故选B. 3. 设
A. 合同且相似 B. 合同但不相似 C. 不合同但相似 D. 不合同不相似 【答案】A
【解析】因为A ,B 都是实对称阵,且B 有4个特征值
又因为即A 也有4个特征值0,0,0,4. 因而存在正交阵
其中
故A 〜B.
再由
是正交阵,知T 也是正交阵,从而有
且由①式得
则A 与B ( ).
使
因此A 与B 合同.
4. 设A 、B 均为2阶矩阵,A*,B*分别为A 、B 的伴随矩阵. 如果阵
A. B. C. D. 【答案】B 【解析】由题设
可逆,由于
的伴随矩阵为( ).
则分块矩
且
所以
5. 设n (n ≥3)阶矩阵
,
若矩阵A 的秩为n-1, 则a 必为( ). A.1
B. C.-1
D.
故
但当a=l时,
【答案】B 【解析】
二、分析计算题
6. 设V 为n 维欧几里得空间i 为乂的正交变换,令
显然
是V 的予空间,证明:
只要证明
所以故因为
所以即综上所述 7. 设
是线性变换,如果
,证明:
【答案】由
因为
于是
,故