当前位置:问答库>考研试题

2017年曲阜师范大学数学科学学院432统计学[专业硕士]之概率论与数理统计教程考研仿真模拟题

  摘要

一、证明题

1. [1]设随机变量X 仅在区间[a,b]上取值,试证:

[2]设随机变量X 取

【答案】[1]仅对连续随机变量X 加以证明. 记p (x )为X 的密度函数,因为

同理可证,

由上题的结论知

[2]仿题[1]有

2. 设总体X 服从双参数指数分布, 其分布函数为

中明,

【答案】令

服从自由度为2的(1), 则

为样本的次序统计量. 试证分布

的联合密度为

作变换

的概率分别

证明

其雅可比(Jacobi )行列式为

的联合密度为

第 2 页,共 41 页

由该联

合密度我们可以知道是独立同分布的随机变量, 且从而

这是指数分布就证明了

的分布函数, 我们知道

,

就是

也就是. 这

3. 设A ,B ,C 三事件相互独立,试证A —B 与C 独立.

【答案】因为

所以A-B 与C 独立.

4. 设

是来自几何分布

的样本, 证明

是充分统计量.

其分布列为

在给定T=t后, 对任意的一个样本

, 有

【答案】由几何分布性质知,

该条件分布与无关, 因而

是充分统计量.

这个条件分布是离散均匀分布, 可用等可能模型给其一个解释:设想有n —1个“1”和t 个“0”, 把它们随机地排成一行, 并在最后位置上添上1个“1”, 譬如

这n 个“1”把此序列分成n 段, 每段中“0”

的个数依次记为且

我们指出, 此种序列共有

, 这就是在

第 3 页,共 41 页

这里诸服从几何分布,

, 而每一个出现是等可能的, 个(这是重复组合)

给定后

的条件联合分布.

即每一个出现的概率都是

这个条件分布还表明:

当已知统计量(

统计量的真实含义.

5. 设随机变量序列证:

【答案】己知则

的值t 后, 就可按此条件分布产生一个样本

), 它虽与原样本不尽相同, 但其分布相同. 在功能上这等价于恢复了原样本. 这就是充分

独立同分布, 数学期望、方差均存在, 且

对任意的

由切比雪夫不等式得

6. 设由

, 结论得证.

可建立一元线性回归方程,是由回归方程得到的拟合值,证

明:样本相关系数r 满足如下关系

上式也称为回归方程的决定系数. 【答案】因为

将之代入样本相关系数r 的表达式中,即有

证明完成.

7. 如果

【答案】记因为令而

第 4 页,共 41 页

, 试证:

与X 的分布函数分别为

, 故存在, 因为

, 使当, 故存在

和时, 有

使当

, 时, 有

. 对任给的

取足够大的

使

是F (x )的连续点, 且