当前位置:问答库>考研试题

2018年吉林师范大学教育科学学院615心理学综合之现代心理与教育统计学考研强化五套模拟题

  摘要

一、概念题

1. 非参数检验

【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。

2. 概率

【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:

a.P

两互不相容对一

切,则

(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。

3. 总体

【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。

4. 个体

【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。

二、简答题

5. 探索性因素分析与验证性因素分析有什么区别?

【答案】(1)探索性因素分析(简写为EFA )就是指传统的因素分析。这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。在典型的EFA 中,研究者通过共变关系的分解,找出最低限度的主要成分()或共同因子(),然后进一步探讨这些主成分或共同因子与

, )个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值

以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。

由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量()两者间寻找平衡点。因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。因而在EFA 中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即

(2)验证性因素分析()。 简写为CFA )是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。

6. 哪些测量和统计的原因会导致两个变量之间的相关程度被低估。

【答案】影响两个变量之间的相关程度被低估的原因有:

(1)测量原因:测量方法的选择、两个变量测验材料的选择和收集、测量工具的精确性、测量中出现的误差、测验中主试和被试效应、测量的信度和效度、测验分数的解释等。

(2)统计原因:全距限制,指相关系数的计算要求每个变量内各个分数之间必须有足够大的差异,数值之间必须有显著的分布跨度或变异性,所以全距限制问题会导致低相关现象;没有满足计算相关系数的前提假设也会低估相关系数,比如用皮尔逊相关计算非线形关系的两个

变量间的相关系数。

7. 方差分析的功能及其基本假定条件有哪些?

【答案】方差分析的主要功能在于分析实验数据中不同来源的变异对总变异的贡献大小,从而确定实验中的自变量是否对因变量有重要影响。

运用F 检验进行的方差分析是一种对所有组间平均数差异进行的整体检验。进行方差分析时有一定的条件限制,其假定条件有:

(1)总体正态分布

方差分析同Z 检验及t 检验一样,也要求样本必须来自正态分布的总体。

(2)变异的相互独立性

总变异可以分解成几个不同来源的部分,这几个部分变异的来源在意义上必须明确,而且彼此要相互独立。

(3)各实验处理内的方差要一致

各实验处理内的方差彼此应无显著差异,这是方差分析中最重要的基本假定。

8. T 检验、F 检验、卡方各自适用于什么情况?

【答案】(l )t 检验运用于总体分布已知的参数检验法中。需要满足总体正态分布,总体

方差未知的情况下的显著性、差异性检验。比较适合于小样本(这时需要数据符合t

分布。当样本含量n 小时,若观察值x 符合正态分布,则用t 检验(因此时样本均数符合t 分布)。

常见的t 检验形式有:样本均数与总体均数比较的t 检验;配对设计的t 检验;成组设计两样本均数比较的t 检验。

两个小样本均数比较的t 检验有以下应用条件:

①两样本来自的总体均符合正态分布,

②两样本来自的总体方差齐。

因此在进行两小样本均数比较的t 检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F 检验,其原理是看较大样本方差与较小样本方差的商是否接近“1”。若接近“1”,则可认为两样本代表的总体方差齐。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。若两样本来自的总体方差不齐,也不符合正态分布,对符合对数正态分布的资料可用其几何均数进行t 检验,对其他资料可 用检验或秩和检验进行分析。

(2)F 检验常常用于方差的显著性检验中。要检验两组数据的离散程度是否有显著不同,需要对两组数据的方差进行差异检验。这时数据符合F 分布。在平均数差异检验时,如果不是相关样本,需要进行方差齐性检验。单因方差分析(F 检验)•常用来检验一个变异因素对试验结果的显著性。作为参数检验法的一种,单因方差分析通常需要假设数据为服从正态分布的随机样本和方差齐性。

方差分析的基本条件是:总体正态分布;变异的可加性;各处理内的方差一致。