2018年华中师范大学心理学院347心理学专业综合[专业硕士]之现代心理与教育统计学考研强化五套模拟题
● 摘要
一、概念题
1. 古典概率
【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。
2. 差异系数
【答案】差异系数(),又称变异系数、相对标准差等,它是一种相对差异量,用CV 来表示,为标准差与平均数的百分比。在对不同样本的观测结果的离散程度进行比较时,常常遇到下述情况:两个或多个样本所测的特质不同。如何比较其离散程度?即使使用的是同一种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?这时需要运用相对差异量进行比较。差异系数的计算公式是:(S 为某样本的标准差,M 为该样本的平均数)。差异系数在心理与教育研宄中常常应用于同一对象的不同领域或同一领域的不同对象。
3. 统计检验力
【答案】统计检验力又称假设检验的效力是指假设检验能够正确侦察到真实的处理效应的能力,也指假设检验能够正确地拒绝一个错误的虚无假设的概率,因此效力可以表示为检验的效力越高,侦察能力越强。影响统计检验力的因素有:①处理效应大小,处理效应越明显,越容易被侦查到,假设检验的效力也就越大。②显著性水平a , a 越大,假设检验的效力也就越大。③检验的方向性,单侧检验侦察处理效应的能力高于双侧检验。④样本容量,样本容量越大,标准误越小,样本均值分布越集中,统计效力越高。
4. 总体
【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义
为一个随机变量,可运用概率论等数学工具进行统计推断。
二、简答题
5. 简述算术平均数的使用特点
【答案】算术平均数是所有观察值的总和除以总频数所得之商,简称为平均数或均数。计算公式:式中N 为数据个数,为每一个数据,为相加求和。
(1)算术平均数的优点是:①反应灵敏;②严密确定。简明易懂,计算方便;③适合代数运算;④受抽样变动的影响较小。
(2)除此之外,算数平均数还有几个特殊的优点:①只知一组观察值的总和及总频数就可以求出算术平均数。②用加权法可以求出几个平均数的总平均数。③用样本数据推断总体集中量时,算术平均数最接近于总体集中量的真值,它是总体平均数的最好估计值。④在计算方差、标准差、相关系数以及进行统计推断时,都要用到它。
(3)算术平均数的缺点:①易受两极端数值(极大或极小)的影响。②一组数据中某个数值的大小不够确切时就无法计算其算术平均数。
6. 应用标准分数求不同质的数据总和时应注意什么问题?
【答案】应用标准分数求不同质的数据总和时应注意这些不同质的观测值的次数分布应该是正态的。因为标准分是线形变化,不改变原分布的形态,只有原分布是正态时,转化后的标准分才是正态的。
7. 怎样理解总体、样本与个体?
【答案】(1)需要研究的同质对象的全体,称为总体。总体既可以是无限的也可以是有限的。
(2)每一个具体研究对象,称为一个个体。
(3)从总体中抽出的用以推测总体的部分对象的集合称为样本。
样本中包含的个体数,称为样本的容量n 。一般把容量
的样本称为小样本。
8. 简述使用积差相关系数的条件。
【答案】积差相关又较积矩相关,是求直线相关的基本方法。积差相关系数适合的情况如下:
(1)两列数据都是测量数据,而且两列变量各自总体的分布是正态的,即正态双变量。为了判断计算相关的两列变量其总体是否为正态分布,一般要根据已有的研究资料进行查询。如果没有资料查询,研究者应取较大样本分别对两变量作正态性检验。这里只要求保证双变量总体为正态分布,而对要计算相关系数的两样本的观测数据并不一定要求正态分布。
的样本称为大样本;而
(2)两列变量之间的关系应是直线性的。如果是非直线性的双列变量,不能计算线性相关。判断两列变量之间的相关是否直线式,可以作相关散布图进行线性分析。相关散布图是以两列变量中的一列变量为横坐标,以另一变量为纵坐标,画散点图。如果呈椭圆形则说明两列变量
是线性相关的,如果散点是弯月状(无论弯曲度大小或方向),说明两变量之间呈非线性关系。
(3)实际测验中,计算信度涉及的积差相关时,分半的两部分测验须满足在平均数、标准差、分布形态、测题间相关、内容、形式和题数都相似的假设条件。
另外,积差相关要求成对的数据,即若干个体中每个个体都有两种不同的观测值。任意两个个体之间的观测值不能求相关。每对数据与其他对数据相互独立。计算相关的成对数据的数目不少于30对,否则数据太而缺乏代表性。
三、计算题
9. 一个样本中有18个被试,随机分成两组,要求他们学习20个某种不熟悉的外语词汇。给两组被试视觉呈现这些词的方式不一样,但所有的被试在测试前都有时间研究这些词。每个被试的
错误个数记录如下。第一组的两个学生未参加测试。请检验两种呈现方式下平均错误数是否相同。
方式A :
方式B :
【答案】假设实验数据正态分布。被试随机分组因此是独立样本平均数差异检验。问题为平均错误数是否相同因此是双侧检验。
(1)对原始数据进行描述统计
方式A :
方式B :
①提出假设 两总体方差齐性
两总体方差不齐性
②选择检验的统计量并计算其值
③确定显著性水平及临界值
当α=0.05时,
④作出统计决断 因为①提出假设所以接受即两总体方差齐性。 (3)两总体方差齐性因此按照两总体方差齐性的独立样本平均数差异检验进行。 即两种呈现方式下平均错误数相同
即两种呈现方式下平均错误数不相同
(2)由于两总体的方差未知,因此需要先进行方差齐性检验。