2018年华中师范大学心理学院312心理学专业基础综合之现代心理与教育统计学考研强化五套模拟题
● 摘要
一、概念题
1. 次数
【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。
2. 相关系数
【答案】相关系数是两列变量间相关程度的指标。相关系数的取值在-1到+1之间,常用小数表示,其正负号表示方向。如果相关系数为正,则表示正相关,两列变量的变化方向相同。如果相关系数为负值,则表示负相关,两列变量的变化方向相反。相关系数取值的大小表示相关的强弱程度。如果相关系数的绝对值在1.00与0之间,则表示不同程度的相关。绝对值接近1.00端,一般为相关程度密切,接近0值端一般为关系不够密切。0相关表示两列变量无任何相关性。
3. 嵌套设计
【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的
B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。
4. 标准误差
【答案】标准误差指描述样本均值对总体期望值的离散程度的统计量。指样本平均数与总体平均数之间的误差,即随机抽样误差分布的标准差。样本平均数的标准误差与总体标准差成正比,与样本的容量的平方根成反比。公式为:式中为总体标准差,N 为样本的大小。标准误差是具体描述样本平均数的抽样误差的。标准误误愈大,抽样误差愈大,则样本平均数越不可靠;反之,标准误差越小,表明样本误差愈小,样本平均数越可靠。
二、简答题
5.
检验法在计数数据的分析中有哪些应用? 【答案】检验因研究的问题不同,可以细分为多种类型,如配合度检验、独立性检验、同质性检验等等。
(1)配合度检验主要用来检验一个因素多项分类的实际观察数与某理论次数是否接近,这
种检验方法有时也称为无差假说检验。当对连续数据的正态性进行检验时,这种检验又可称
(2)独立性检验是用来检验两个或两个以上因素各种分类之间是否有关联或是否具有独立为正态吻合性检验。 性的问题。两个因素是指所要研究的两个不同事物。例如性别与对某个问题的态度是否有关系,这里性别是一个因素,分为男女两个类别,态度是另一个因素,可分为赞同、不置可否、反对等多种类别。各因素分类的多少视研究的内容及所
划分的分类标志而定。这种类型的/检验适用于探讨两个变量之间是否具有关联(非独立)或无关(独立),如果再加入另一个变量的影响,即探讨三个变量之间关系时,就必须使用多维列联表分析方法。
(3)同质性检验主要目的在于检定不同人群母总体在某一个变量的反应是否具有显著差异。当用同质性检验检测双样本在单一变量的分布情形,如果两样本没有差异,就可以说两个母总体是同质的,反之,则说这两个母总体是异质的。
6. 简述最小二乘法。
【答案】最小二乘法是建立精确的回归方程经常采用的方法,其基本过程如下: 设
若
图像“很象”
一条直线(不是直线),我们的问题是确定一条直线使得它能“最好”地反映出这组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应该是
确的回归方程:
7. 一个变量的两个水平间的相关很高,是否说明两水平的均数间没有差异呢?为什么?举例说明。
【答案】不能说明两水平的均数间没有差异。
(1)相关关系是指两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定两类现象之间哪个是因,哪个是果。相关的情况可以有三种:一种是两列变量变动方向相同,即一种变量变动时,另一种变量也同时发生或大或小与前一种变量同方向的变动,称为正相关。如身高与体重的关系。第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小但与前一列变量指向相反的变动。例如初打字时练习次数越多,出现错误的量就越少。第三种相关是零相关,即两列变量之间无关系。比如学习成绩与身高的关系。
(2)当一个变量的两个水平的相关很高时,需要考虑这种相关是正相关还是负相关,即考虑其变化发展的方向。
(3)当一个自变量的两个水平的相关很高时,不能说明两个水平的均数之间没有差异。因
是直角平面坐标系下给出的一组数据, 我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据最小,即这时误差的平方和最小,这时可以求得比较精
为两组变量的相关系数大小只是表明两组的线性关系强弱。即使两组变量成完全正相关,即相关系数为+1,也不能说明两组变量的平均数没有差异。比如两组变量的对应关系
为即这时两组变量的相关系数为+1,而两组变量的均数不不
同的。因为这是在同一个变量的不同水平,而且缺乏足够的信息分析。如果要知道这两个水平均数之间是否有差异,可以采用t 检验等方法获得。
8. 如何区分点二列相关与二列相关?
【答案】(1)点二列相关法(point-biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。
二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个也是连续变量不过被按照某种标准人为的划分的二分变量之间相关程度的统计方法。
(2)点二列相关与二列相关的区别
二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的是非类客观选择题,计算该题目的区分度就应该选用点二列相关。二者之间的主要区别是二分变量是否为正态分布。总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这时,不管观测数据代表的是一个真正的二分变量,还是一个基于正态分布的人为二分变量,这时就用点二列相关。当确认数据分布形态为正态分布时,都应选用二列相关。只要有任何疑问,选用点二列相关总是较好的选择。在实际的研究当中,二列相关很少使用。
三、计算题
9. [1]问下表中成绩与性别是否有关?
[2]题[1]的性别若是改为另一种成绩A (正态分布)的及格、不及格两类,且知1、3、5、7、9被试的成绩A 为及格,2、4、6、8、10被试的成绩A 为不及格,请选用适当的方法计算相关,并解释之。
【答案】[1](1)计算相关系数
根据题意可知,两列变量一列为二分变量(性别),一列为连续变量(百分制成绩可以认为总体正态),因此计算点二列相关系数来判断成绩与性别之间有无相关。
设p 为女生比率;
q 为男声比率;
相关内容
相关标签