当前位置:问答库>考研试题

2017年西安交通大学经济与金融学院432统计学[专业硕士]考研题库

  摘要

一、简答题

1. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?

【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。

2. 抽样误差影响因素分析。

【答案】影响抽样误差的因素主要有:(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越小;抽样数目越少,抽样误差越大。当n=N时,就是全面调查,抽样误差此时为零。(2)总体标志变动程度。 在其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的 抽样误差相差很小,可忽略不计。(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。

3. 回归分析中的误差序列有何基本假定?模型参数的最小二乘估计

模型用于预测,影响预测精度的因素有哪些?

【答案】(1

)误差项是一个服从正态分布的随机变量,且独立,

0的随机变量,即线性函数;②无偏性

具有最小方差的估计量。

(3)影响预测精度的因素有:①预测的信度要求。同样情况下,要求预测的把握度越高,贝_应的预测区间就越宽,精度越低;②总体y 分布的离散程度越大,相应的预测区间就越宽,预测精度越低;③样本观测点的多少n 。n 越大,相应的预测区间就越窄,预测精度越高;④样本观测点中,解释变量x 分布的离散度。x 分布越离散,预测精度越高;⑤预测点离样本分布中心的距离。预测点越远离样本分布中心预测区间越宽,精度越低,越接近样本分布中心间越窄,精度越高。

第 2 页,共 57 页 具有哪些统计特性?若)。独立性意味着对于一个特定的值,它所对应的与其他值所对应的不相关。误差项是一个期望值为对于所有的值分别是的方差都相同。 为随机变量的是所有线性无偏估计量中(2

)模型参数的最小二乘估计的统计特性:①线性,即估计量的无偏估计;③有效性区

4. 解释多元回归模型、多元回归方程、估计的多元回归方程的含义。

【答案】(1)多元回归模型:设因变量为如何依赖于自变量

式中(2)多元回归方程:

根据回归模型的假定有

方程,它描述了因变量y 的期望值与自变量

(3)估计的多元回归方程:

回归方程中的参数

数据去估计它们。当用样本统计

时,就得到了估计的

多元回归方程,其一般形式为:

式中是参数称为偏回归系数。

5. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。

【答案】同意。

假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。

假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。

假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。

6. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?

【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行

第 3 页,共 57 页 个自变量分别为是模型的参数描述因变量y

为误差项。 称为多元回归和误差项的方程称为多元回归模型。其一般形式可表示为

:之间的关系。 是未知的,需要利用样本去估计回归方程中的未知参

数的估计值是因变量y 的估计值。其中

次不同

的检验,如果每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。

方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。

7. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。

【答案】(1)总平方和(S^T)是实际观测值与其均值的离差平方和,即

(2)回归平方和(^狀)是各回归值

来解释的变差部分。

(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即

称为误差平方和。

(4)三者之间的关系

8. 解释多重判定系数和调整的多重判定系数的含义和作用。

【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为 它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得

的值永远小于

而且的值不会由于模型中自变量个数的增加而越来越接近1,

其计算公式为

9. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?

【答案】(1)参数估计和假设检验的相同点

①是根据样本信息推断总体参数;

②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;

③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。

(2)参数估计和假设检验的不同点

①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;

第 4 页,共 57 页