2018年西北农林科技大学风景园林艺术学院314数学(农)之工程数学—线性代数考研强化五套模拟题
● 摘要
一、解答题
1. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
为任意常数. 此时方程组无解. 时
的矩阵A ,满
足
且
故原方程组的通解为
(3
)当
(4
)当
2. 已知实二次
型
即
时
此时方程组无解.
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型
的具体表达式.
专注考研专业课13年,提供海量考研优质文档!
【答案】(Ⅰ)由由
知
,B 的每一列
满足
知矩阵A
有特征值
即
是属于
A 的特征值.
则
与
—
j 正交,
于是有
令
的线性无关特征向
显然
B 的第1
, 2列线性无关
,量,
从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ)由于
则由正交变换
故
化二次型为标准形
故二次型
专注考研专业课13年,提供海量考研优质文档!
3. 设n 维列向
量
【答案】
记
线性无关,其中S 是大于2的偶数. 若矩
阵
试求非齐次线性方程组
的通解.
方程组①化为:
整理得
,由
线性无关,得
显然①与②同解.
下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)
从而组的基础解系为
数.
4. 已知A 是3阶矩阵
,
有无穷多解.
易知特解为
从而②的通解,
即①的通解为
对应齐次方程
A 为任意常
是3维线性无关列向量,且
(Ⅰ)写出与A 相似的矩阵B ; (Ⅱ)求A 的特征值和特征向量:
(Ⅲ)求秩
【答案】(Ⅰ)由于
令
因
线性无关,故P 可逆.
相关内容
相关标签