当前位置:问答库>考研试题

2018年成都信息工程大学管理学院809运筹学考研强化五套模拟题

  摘要

一、选择题

1. 用单纯形法求解线性规划问题时,满足( )对应的非基变量xj 可以被选作为换入变量。

A. 检验数σ>0

B. 检验数σ<0

C. 检验数σ>0中的最大者

D. 检验数σ<0中的最小者

【答案】C

【解析】当某些σ>0时,xj 增加则目标函数值还可以增大,这时要将某个非基变量xj 换到基变量中去,为了使目标函数值增加得快,一般选择σ>0中的大者。

2. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。

A. 最大流

B. 最大割

C. 最小流

D. 最小割

【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

3. 设线性规划

A. 基本可行解

B. 基本可行最优解

C. 最优解

D. 基本解

【答案】A

【解析】可行解包括基可行解与非基可行解。 有可行解,则此线性规划一定有( )。

4. 无约束最优化问题

)问题的( )。

A. 全局最优解

B. 局部最优解

C. 极点

D .K-T点

【答案】B 中,如果在X*的某个领域内满足,则X ’是

【解析】局部最优解即在X*的某邻域,满足 ,则称X*是函数的局部最优解。

二、填空题

5. 若x 为某极大化线性规划问题的一个基可行解,

用非基变量表达其目标函数的形式为

则X 为该LP 最优解的条件是:_____。

【答案】

。 【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以

6. 现有m 个约束条件,若某模型要求在这m 个条件中取”个条件作为约束,用,1变量来实现 该问题的约束条件组为:_____。

【答案】

【解析】0一l 变量取1时取该约束条件,否则不取,又一共取S 个约束条件。则可得到约束条件组为:

7. Fibonacoi 法在[2,6]区间上取的初始点是_____。

【答案】,

【解析】由Fibonacci 的计算方法可知。

8. 图G=(V ,E )有生成树的充分必要条件是_____。

【答案】G 是连通图

【解析】图G 是连通图,如果G 不含圈,那么G 本身是一个树,从而G 使它自身的一个支撑树。现设G 含圈,任取一个圈,从圈中任意地去掉一条边,得到G 的一个支撑子图Gl 。如果

Gl 不含圈,那么Gl 是G 的 一个支撑树,如果Gl 仍含圈,那么从Gl 中再任取一个圈,如此重复,最终可以得到G 的一个支撑子图Gk , 它不含圈,于是Gk 就是G 的一个支撑树。

三、判断题

9. 运输问题按照最小元素法给出的初始基可行解,从每一空格出发可以找出且仅能找出惟一的闭合回路。( )

【答案】√

【解析】从每一空格出发一定存在和可以找到惟一的闭回路。因(m+n-l)个数字格(基变量)对应的系数向量是一个基。任一空格(非基变量)对应的系数向量是这个基的线性组合。而这些向量构成了闭回路。

10.运输问题是一种特殊的线性规划模型,因而其求解结果也可能出现四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。( )

【答案】×

【解析】运输问题是一种特殊的线性规划模型,它总存在可行解,或是存在惟一最优解,或是有无穷最优解。

11.如果线性规划问题有最优解,则它一定是基可行解。( )

【答案】√

【解析】基解且可行才有可能是最优解。

12.结点最早时间同最迟时间相等的点连接的线路就是关键路线。( )

【答案】√

【解析】关键路线是指总时差为零的工作链,而该工作链是由一系列最早时间同最迟时间相等的点连接而成的。

13.在任一图G 中,当点集v 确定后,树图是G 中边数最少的连通图。( ),

【答案】×

【解析】连通且不含圈的无向图称为树。

四、证明题

14.称顾客为等待所费时间与服务时间之比为顾客损失率,用R 表示。

(l )试证:对于M/M/1模型,

(2)在上题中,设 不变而。 是可控制的,试定使顾客损失率小于4。

证毕。 【答案】(l )对于M/M/1模型, 。由定义,有