2017年吉林省培养单位长春人造卫星观测站803概率论与数理统计考研题库
● 摘要
一、计算题
1. 甲口袋有5个白球、3个黑球,乙口袋有4个白球、6个黑球,从两个口袋中各任取一球,求取到的两个球颜色相同的概率.
【答案】从两个口袋中各取一球,共有出黑球,这共有
种取法,于是
2. 设二维随机变量(X , Y )的联合密度函数为
(1)求(2)求(3)求【答案】(1)
的非零区域与
的交集为图(a )阴影部分, 所以
(2)
的非零区域与
的交集为图(b )阴影部分, 所以
又因为的非零区域与
的交集为图(c )阴影部分, 所以
(3)
的非零区域与
的交集为图(d )阴影部分, 所以
种等可能取法,而两个球颜色相同有两种情况:
第一种是从甲口袋取出白球、从乙口袋也取出白球;第二种是从甲口袋取出黑球、从乙口袋也取
图
3. 设二维随机变量(X , Y )服从二维正态分布
(1)求
【答案】(1)由于
所以
因为
所以
(2)因为
所以由E (X )=E(Y )=0, 得
又由对称性这表明, 当
所以得
时, X-Y 与XY 不相关.
, 样本标准差为^, 样本极差为RA , 样本中位数为
如此得到样本B , 试写出样本B 的均值、标准
样本B 为
, 且
因而
4. 设有容量为n 的样本A , 它的样本均值为mA. 现对样本中每一个观测值施行如下变换差、极差和中位数.
【答案】不妨设样本A 为
(2)求X —Y 与XY 的协方差及相关系数.
5. 甲口袋有a 个白球、b 个黑球,乙口袋有n 个白球、m 个黑球.
(1)从甲口袋任取1个球放入乙口袋,然后再从乙口袋任取1个球. 试求最后从乙口袋取出的是白球的概率;
(2)从甲口袋任取2个球放入乙口袋,然后再从乙口袋任取1个球. 试求最后从乙口袋取出的是白球的概率.
【答案】记事件A 为“从乙口袋取出的这个球是白球 (1)对甲口袋取出的球是白球或黑球,使用全概率公式可得
(2)对甲口袋取出的两个球分三种情况:两个白球、一黑一白、两个黑球. 使用全概率公式可得
6. —盒晶体管中有8只合格品、2只不合格品. 从中不返回地一只一只取出,试求第二次取出合格品的概率.
【答案】记事件
为“第i 次取出合格品”,i=l,2. 用全概率公式
7. 甲、乙两人轮流掷一颗骰子,甲先掷. 每当某人掷出1点时,则交给对方掷,否则此人继续掷. 试求第n 次由甲掷的概率.
【答案】设事件
为“第i 次由甲掷骰子”,记
所以由全概率公式
得
由此得递推公式
所以得
则有
相关内容
相关标签