2017年苏州大学概率统计(同等学力加试)考研复试核心题库
● 摘要
一、计算题
1. 根据调查, 某集团公司的中层管理人员的年薪数据如下(单位:千元):
试画出茎叶图.
【答案】取整数部分为茎, 小数部分为叶, 这组数据的茎叶图如下:
图
2. 某单位招聘员工,共有10000人报考. 假设考试成绩服从正态分布。且已知90分以上有359人,60分以下有1151人. 现按考试成绩从高分到低分依次录用2500人,试问被录用者中最低分为多少?
【答案】记X 为考试成绩,则
由频率估计概率知
上面两式可改写为
再查表得
由此解得
设被录用者中最低分为k ,则由
查表得
注:当p<0.5时,满足等式为
第 2 页,共 29 页
从中解得因此取被录用者中最低分为78.75分即可.
的茗在标准正态分布函数表上不易查得,故改写此式
即可查得-X.
3. 设随机变量X 服从标准正态分布N (0,1),试求以下Y 的密度函数:
(1)【答案】(1)
. ;(2
)
所以当
时,Y 的密度函数为
对上式两端关于y 求导得
所以Y 的密度函数为
这个分布被称为半正态分布. (2
)
的可能取值范围为
所以当
时,Y 的密度函数为
对上式两端关于y 求导得
所以Y 的密度函数为
4. 假设回归直线过原点,即一元线性回归模型为
诸观测值相互独立.
(1)写出的最小二乘估计,和(2)对给定的
【答案】(1)由最小乘法原理,令
的无偏估计;
求
则正规方程为
其对应的因变量均值的估计为
当
y>l时,Y 的分布函数为
的可能取值范围为
当y>0时,Y 的分布函数为
第 3 页,共 29 页
从中解得届的最小二乘估计为不难看出
于是,由
有
将
写成
的线性组合,利用
间的独立性,有
由此即有
从而
这给出
的无偏估计为
于是
5. 设a 为区间(0, 1)上的一个定点, 随机变量X 服从区间(0, 1)上的均匀分布. 以Y 表示点X 到a 的距离. 问a 为何值时X 与Y 不相关.
【答案】由题设条件知
所以由此方程等价于
从中解得在(0, 1)内的实根为a=0.5, 即a=0.5时, X 与Y 不相关.
第 4 页,共 29 页
(2)对给定的对应的因变量均值的估计为
又因为
可得方程