2017年华北电力大学(保定)数理系808量子力学考研仿真模拟题
● 摘要
一、填空题
1. 一粒子的波函数【答案】
2. 如图所示,有一势场为:
,当粒子处于束缚态时,£的取值范围为_____。
则粒子位于
间的几率为_____。
图
【答案】
3. 对氢原子,不考虑电子的自旋,能级的简并度为_____,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为_____。
【答案】
4. 不确定关系是微观粒子_____性质的数学表述。
【答案】波粒二象性
5. 描述微观粒子运动状态的量子数有_____; 具有相同n 的量子态,最多可以容纳的电子数为_____个。
【答案】
6 设体系的状态波函数为.量
的关系为_____。
如在该状态下测量力学是F 在确定的值则力学量算符与态矢
【答案】
二、简答题
7. 什么是隧道效应,并举例说明。
【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。
8. —个量子体系处于定态的条件是什么?
【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。
9. 描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
10.放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?
【答案】与量子隧穿效应有关。
11.坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
12.什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
13.波函数是用来描述什么的?它应该满足什么样的自然条件?么?
【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。表示在时刻附近
14.什么是塞曼效应?什么是斯达克效应? 谱发生分裂的现象。
体积元中粒子出现的几率密度。
的物理含义是什
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光
三、证明题
15.粒子自旋处于
的本征态
【答案】易知但是
,(常数)
同理,可得
因此:
试证明的不确定关系
:
所以有:
16.证明,
【答案】因为
可得:
四、计算题
17.氢原子处在基态(1)r 的平均值; (2)动能的平均值; (3)动量的概率分布函数. 【提示:
【答案】(1) r 的平均值即
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级
和简并度,与三维各向同性谐振子比较.[上]3.9题 (2)由维里定理
(为势能关于r 的幂次)有动能平均值
其中玻尔半径
】
求:
而氢原子基态能量为
故
5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并
度,与三维各向同性谐振子比较.[上]3.9题5.10仿照5.3节,在直角坐标系中求解二维各向同性谐振子的能级和简并度,与三维各向同性谐振子比较.
18.粒子的一维运动满足薛定愕方程:(1)若
是薛定谔方程的两个解,证明
与时间无关.
(2)若势能V 不显含时间t ,用分离变数法导出不含时的薛定谔方程,并写出含时薛定谔方程的通解形式. 【答案】⑴