2017年湖南师范大学物理与信息科学学院725量子力学之量子力学教程考研强化模拟题
● 摘要
一、简答题
1. 量子力学中的力学量算符有哪些性质? 为什么需要这些性质?
【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.
量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.
2. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
3. 量子力学中的可观测量算符为什么应为厄米算符?
【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。
4. 波函数是否描述同一状态?
【答案】
与描写的相对概率分布完全相同,描写的是同一状态。
5. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
6. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
7. 什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
8. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
9. 现有三种能级【答案】一维谐振子.
10.波函数么?
【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
表示在时刻附近
体积元中粒子出现的几率密度。 请分别指出他们对应的是哪些系统。
对应一维无限深势阱;
对应
对应中心库仑势系统,例如氢原子;
是用来描述什么的?它应该满足什么样的自然条件?的物理含义是什
二、证明题
11.证明么正变换不改变算符的本征值。
【答案】设在某一表象下,一个幺正变换的矩阵表示为S 。对任意算符,其在该表象下的矩阵表示为F , 则对其进行么正变换后的矩阵表示为:
由于相似变换不改变矩阵本征值,故
与F 本征值相同,因此么正变换不改变算符本征值。
12.设力学量A 不显含时间t ,证明在束缚定态下,【答案】设束缚定态为
即有:
因A 不显含时间t , 所以
因而有:
三、计算题
13.—个自旋为1/2的粒子在三维各向同性的谐振子势中运动,求其基态和第一激发态的能量、波函数和相 应简并度。已知质量为的无自旋粒子在一维谐振子势(频率为)中运动的波函数为基态
第一激发态
【答案】三维各向同性的谐振子可作分离变量求解,分别为三个方向的一维谐振子运动的并合。 基态为三个方向都在基态,加上自旋自由度可得波函数为:
其中,于是可知能量为
为自旋波函数。 简并度等于
因此相应能量为
14.设氢原子处于状态
相应简并度为6。
第一激发态为有一个方向处于第一激发态,故波函数为:
求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值.
【答案】氢原子的定态能量为由氢原子所处的态函数
所以氢原子能量的取值为角动量平方的取值为角动量z 分量的取值为:
几率1/4,
几率3/4,
其平均值
之间的测不准关系。
和依次表示
几率为1,能量的平均值为
几率为1,其平均值为
15.简述测不准关系的主要内容,并写出坐标和动量【答案】
设
和
的对易关系
是一个算符或普通的数。以
相关内容
相关标签