2017年湖南师范大学物理与信息科学学院725量子力学之量子力学教程考研题库
● 摘要
一、简答题
1. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系
物理含义:若两个力学量不对易,则它们不可能同
时有确定的测值。
2. 写出电子自旋的二本征值和对应的本征态。 【答案】
3. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
为
4. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
5. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
6. 什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
第 2 页,共 42 页
7. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
8. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是它的本征值(非简并)和本征函数
已知:另一部分
很小,可以看作是加于
上的微扰. 写出在非简并
状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】
一级修正波函数为二级近似能量为
其中
9. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.
叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.
10.试比较粒子和波这两个概念在经典物理和量子力学中的含义。
【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。
为粒子可能处于的态,那么这些态的任意线性组合
二、证明题
11.证明厄密算符的本征值是实数。量子力学中表示力学量的算符是不是都是厄密算符? 【答案】以表示的本征值
由此得
12.粒子自旋处于
的本征态
【答案】易知但是
,(常数)
第 3 页,共 42 页
表示所属的本征函数,则
即是实数。
因为是厄密算符,于是有
试证明的不确定关系
:
所以有:
同理,可得因此:
三、计算题
13.已知征值。 【答案】中,
表示力学量,因而是厄密算符,因此,
算符也为厄米算符。可知,
表象
i 算符的本征值均为±1。有:
当设
时,
本征函数为表象中表示为
时,本征函数为
因此有:
算符,在
表象中给出
的矩阵表达式,并示出它们的本征函数及本
由厄米算符的定义,可知a 、c 必为实数,
又
由此有a=c=0, 则再由由
可得:
代入得:
取b=l,可得:
由
分别代回本征方程
同理可得,
的本征值为±1,相应的本征函数为:
14.设
是自旋为1/2的粒子的沿x 、y 与z 轴的自旋算符,而是某一角度.
在
表象中的的矩阵形式; 化简为粒子自旋算符的线性组合.
第 4 页,共 42 页
可知其相应的本征函数为:
(1)写出粒子的自旋算符(2)将述算符的乘积
相关内容
相关标签