2016年南京师范大学教育科学学院高等数学(同等学力加试)复试笔试最后押题五套卷
● 摘要
一、计算题
1. 设抛物线y=ax2+bx+c通过点(0,0),且当x ∈[0, 1]时,y ≥0。试确定a ,b ,c 的值,使得
2
抛物线y=ax+bx+c与直线x=1,y=0所围图形的面积为,且使该图形绕x 轴旋转而成的旋转体
的体积最小。
2
,可得c=0。 【答案】由已知条件:抛物线y=ax+bx+c通过点(0,0)2
抛物线y=ax+bx+c与直线x=1,y=0所围图形的面积为
从而得到
,即
。该图形绕x 轴旋转而成的旋转体的体积为
因此当b=2时体积最小,此时此抛物线满足y ≥0, 故所求解:
,抛物线为
,b=2,c=0符合题目要求。
,在区间[0, 1]上,
2. 求下列各曲线所围成图形的公共部分的面积:
(1)(2)
,
,由于图形关于极轴的对称性(如图1),
【答案】(1)首先求出两曲线交点为
因此所求面积为极轴上面部分面积的2倍,即得
(2)首先求出两曲线交点为
和
,因此有
由于图形的对称性(如图2)
图1
图2
3. 判断下列级数的收敛性:
【答案】(1)此级数为公比(2)此级数的部分和
而
即该级数发散。 (3)此级数的一般项级数发散。
(4)此级数为公比(5)此级数的一般项等比级数,而收敛。
故
与
的等比级数,因
注意到
故该级数发散。
分别是公比
与
的
有
不满足级数收敛的必要条件,故该
故
的等比技术,因
故该级数收敛。
均收敛,根据收敛级数的性质可知,原级数
4. 某厂生产如图所示的扇形板,半径R=200mm,要求中心角a 为55°。产品检验时,一般用测量弦长1的办法来间接测量中心角α,如果测量弦长1时的误差角测量误差
是多少?
,问由此而引起的中心
图
【答案】如图,由故
当
时,
将
代入上式得
5. 求上半球面和xOz 面上的投影.
【答案】如图所示. 所求立体在xOy 面上的投影即为
得所围成的区域.
z 轴及曲线故所求立体在xOz 面上的投影为由x 轴,
,而由
与圆柱体
的公共部分在xOy
得
相关内容
相关标签