当前位置:问答库>考研试题

2018年西北农林科技大学农学院314数学(农)之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

矩阵

且A 可对角化,

求行列式

其中E 是n 阶单位矩阵.

使或1.

2.

已知矩阵可逆矩阵P ,使

若不相似则说明理由。

试判断矩阵A 和B 是否相似,若相似则求出

【答案】由矩阵A 的特征多项式

得到矩阵A

的特征值是当

时,由秩

有2个线性无关的解,即

时矩阵A 有2个线性无关的特征向量,矩阵

A 可以相似对角化,因此矩阵A 和B 不相似。

3.

设二次型

(1)证明二次型f

对应的矩阵为(2

)若

【答案】(1)由题意知,

正交且均为单位向量,证明f

在正交变换下的标准形为

故二次型/

对应的矩阵为(2)证明:

设则

而矩阵A

的秩

故f

在正交变换下的标准形为 4.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角

,由于

所以

为矩阵对应特征值所以

为矩阵对应特征值

所以

的特征向量;

的特征向量; 也是矩阵的一个特征值;

专注考研专业课13年,提供海量考研优质文档!

于是A 的3个特征值为(Ⅰ)当

时,A 有3个不同特征值

,故4

可对角化,且可对角化为

(Ⅱ)当a=0

此时A 有二重特征值1,

仅对

应1个线性无关的特征向量,故此时A 不可对角化.

Ⅲ)

A

有二重特征

仅对应

1个线性无关的特征向量

故此时A 不可对角化.

二、计算题

5. 设

【答案】若记其中

则A 成为一个分块对角矩阵. 于是

因故故. 代入即得