2017年华北电力大学(北京)数理系892高等代数考研题库
● 摘要
一、选择题
1. 设A 是n 阶矩阵,a 是n 维向量,若秩
【答案】D 【解析】
2. 在n 维向量空间取出两个向量组,它们的秩( ).
A. 必相等
B. 可能相等亦可能不相等 C. 不相等 【答案】B 【解析】比如在
若选故选B.
3. 二次型
A. 正定 B. 不定 C. 负定 D. 半正定 【答案】B 【解析】方法1
方法2 设二次型矩阵A ,则
是不定二次型,故选B. 是( )二次型.
从而否定A ,
若选
从而否定C ,
中选三个向量组
则线性方程组( )•
由于因此否定A ,C ,A 中有二阶主子式
从而否定D ,故选B.
4. 设行列式
为f (X ),则方程,f (x )=0的根的个数为( ) A.1 B.2 C.3 D.4 【答案】B
【解析】因为将原行列式的第1列乘(-1)分别加到其他3列得
5. 设A 、B 为满足AB=0的任意两个非零矩阵. 则必有( ).
A.A 的列向量组线性相关,B 的行向量组线性相关 B.A 的列向量组线性相关,B 的列向量组线性相关 C.A 的行向量组线性相关,B 的行向量组线性相关 D.A 的列向量组线性相关,B 的列向量组线性相关 【答案】A 【解析】方法1:设由于
又由方法2:设考虑到
不妨设线性相关.
由已知及以上证明知B ’的列线性相关,即B 的行向量组线性相关.
由于AB=0, 所以有
即r (A )>0, r (B )>0, 所以有
R (A ) 故A 的列向量组及B 的行向量组均线性相关. 并记A 各列依次为 由于AB=0可推得AB 的第一列 从而 二、分析计算题 6. 求实二次型 的规范形及符号差. 【答案】 设取则 再取 则 再取 从而作非退化线性变换 则 可得 此即为所求的规范形,显然符号差为0.