2018年新疆农业大学林业研究所610大学数学2之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
设
(1)计算行列式∣A ∣;
(2)当实数a 为何值时,
线性方程组【答案】
有无穷多解?并求其通解.
若要使得原线性方程组有无穷多解,
则有及得
此时,
原线性方程组增广矩阵为
进一步化为行最简形得
可知导出组的基础解系为
非齐次方程的特解为
故其通解为k 为任意常
数.
2. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
是正定矩阵,
并求行列式
的值.
即或
贝
因为A 是
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
且秩
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
3. 设A
为
的解为【答案】
由
利用反证法,
假设以有
解矛盾,故假设不成立,
则
由
.
得
有
有惟一解知
则方程组
. 即
即
可逆.
矩阵
且
有唯一解. 证明:
矩阵为A 的转置矩阵).
易知
于是方程组
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
为可逆矩阵,
且方程组
只有零解.
使
.
所
只有零
有非零解,即存在
有非零解,这与
4.
已知
与相似. 试求a , b , c 及可逆矩阵P ,使
【答案】由
于故B 的特征值
为
从而B
可以对角化为
分别求令
所对应的特征向量,
得
有
即a=5.
由
得A ,B 有相同特征值
,
故
再由得b=-2, c=2,于是
分别求A 的对应于特征值1,2, -1的特征向量得
:令
记
有
.
因此
即
则P 可逆,
且
二、计算题
相关内容
相关标签