2018年上海交通大学生物医学工程学院(含Med-X研究院)829电磁学和量子力学量子力学导论考研仿真模拟五套题
● 摘要
一、简答题
1. 在量子力学中,能不能同时用粒子坐标和动量的确定值来描写粒子的量子状态?
【答案】不能。因为在量子力学中,粒子具有波料二象性,粒子的坐标和动量不可能同时具有确定值。
2. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
二、计算题
3. 自旋在
方向的粒子,磁矩为
置于沿z
方向的磁场中,写出其哈密顿量,并求其
概率幅与时间的关系。 【答案】将上述自旋在
方向的粒子(譬如电子)置于沿z 方向的磁场B 中观察其概率幅的
变化。这时的哈密顿矩阵为:
式中,
是泡利矩阵,
为粒子的磁矩。电子负电,从而自旋磁矩
与角动量的方
向相反。当自旋角动量和磁场同沿z 方向时,磁矩沿-z 方向。 可得薛定谔方程为:
即:
积分后得:
取t=0时刻的初始条件为则:
式中,
围绕极轴转动,相
由上式可以看出,粒子的自旋矢量始终与极轴保持固定的夹角但以角速度当于经典电磁学中磁偶极子在外磁场中拉莫旋进的角速度,如图所示。
图
4. 假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场S 沿轴正向,电子磁矩在均匀磁场
中的势能表示
;
这里
为电子的磁矩。自旋用泡利矩阵
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:(2)假设(3)求
时,电子自旋指向x 轴正向,即时,电子自旋指向y 轴负向,即
求
时,自旋的平均值。
的几率是多少?
【答案】(1)忽略电子轨道运动,其中,所以哈密顿为:薛定谔方程为:(2)在
是玻尔磁子。
表象中求解,自旋波函数可表示为:
即:
其中,设
因此可得:
在时刻t ,自旋的平均值:
时,电子的自旋指向x 轴正向,对应波函数为
相关内容
相关标签