2018年上海交通大学物理与天文系829电磁学和量子力学之量子力学导论考研核心题库
● 摘要
一、简答题
1. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
2. 如果算符表示力学量那么当体系处于
的本征态时,问该力学量是否有确定的值?
【答案】是,
其确定值就是在本征态的本征值。
3. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。
【答案】不同意。因为
4. 描写全同粒子体系状态的波函数有何特点? 化。
5. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:
6. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
7. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
问
是否
为实函数,但
可以为复函数。
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变
8. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
9. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。
【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。
10.写出在【答案】
表象中的泡利矩阵。
二、计算题
11.相互不对易的力学量是否一定没有共同的本征态?试举例加以说明。 【答案】相互不对易的力学量可以有共同的本征态。例
如
就是它们的共同本征态,本征值皆为
12.设基态氢原子处于弱电场中,微扰哈密顿量为(1)求很长时间后已知,基态
电子跃迁到激发态的概率.
(2)基态电子跃迁到下列哪个激发态的概率等于零? 简述理由
.
【答案】(1)根据跃迁几率公式
其中
可知,必须先求得
相互不对易,
但
其中 T 为常数。
已知,a 基态其中为玻耳半径.
根据题意知,氢原子在t>0时所受微扰为:氢原子初态波函数为:
根据选择定则记由初态
到末态
终态量子数必须是
的跃迁矩阵元为
将
代入跃迁几率公式
(2)基态电子跃迁到
的几率均为0, 因为不符合跃迁的选择定则
13.—个自旋为1/2的粒子在三维各向同性的谐振子势中运动,求其基态和第一激发态的能量、波函数和相 应简并度。已知质量为的无自旋粒子在一维谐振子势(频率为)中运动的波函数为基态
第一激发态
【答案】三维各向同性的谐振子可作分离变量求解,分别为三个方向的一维谐振子运动的并合。 基态为三个方向都在基态,加上自旋自由度可得波函数为:
其中,于是可知能量为
为自旋波函数。 简并度等于
因此相应能量为
相应简并度为6。
第一激发态为有一个方向处于第一激发态,故波函数为: