2018年四川大学原子与分子物理研究所832量子力学之量子力学导论考研仿真模拟五套题
● 摘要
一、简答题
1. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
2. —个量子体系处于定态的条件是什么?
【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。
3. 写出电子在外电磁场中的哈密顿量。 【答案】
4. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
5. 写出泡利矩阵。 【答案】
6. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。
(3)电子自旋磁矩需引入2倍关系。
7. 解释量子力学中的“简并”和“简并度”。
【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。
8. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率),即
9. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系
物理含义:若两个力学量不对易,则它们不可能同
时有确定的测值。
10.波函数是用来描述什么的?它应该满足什么样的自然条件?么?
的物理含义是什
【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。
表示在时刻附近
体积元中粒子出现的几率密度。
二、计算题
11.设氢原子处于状态
求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值.
【答案】氢原子的定态能量为由氢原子所处的态函数
所以氢原子能量的取值为角动量平方的取值为角动量z 分量的取值为:
几率1/4,
几率3/4,
其平均值
几率为1,能量的平均值为
几率为1,其平均值为
12.一质量为m 的粒子,可在宽为a 无限深势阱当中自由运动. 在t=0的初始时刻其波函数为
其中A 为实常数. (1)求A 使平均值?
(3)求t 时刻的波函数
满足归一化条件.
(2)如果进行能量测量,则能得到哪些能量值? 相应取这些能量值的概率又是多少? 再计算能量的
【答案】(1)无限深方势阱中粒子的本征波函数为初始时刻波函数可化为
由归一化条件有
(2)无限深方势阱中粒子的本征能量为
解得
.
故粒子可能测得能量即
测得能量的平均值为(3) t 时刻波函数为
13.在自旋态【答案】
下,求在自旋态j
下:
所以有:
相关内容
相关标签