2017年南通大学电气工程学院816高等代数(二)考研仿真模拟题
● 摘要
一、选择题
1. 齐次线性方程组
的系数矩阵为A ,若存在3阶矩阵
【答案】C 【解析】若当C.
2. 设A 为n 阶可逆矩阵,交换A 的第1行与第2行得B ,则有( ).
A. 交换A*的第1列与第2列得B* B. 交换A*的第1行与第2行得B* C. 交换A*龙第1列与第2列得-B* D. 交换A*的第1行与第2行得-B* 【答案】C
【解析】解法1:题设P (1, 2)A=B,所以有
又
所以有
即A*右乘初等阵P (1,2)得-B*
解法2:题设P (1,2)A=B,所以丨B 丨=-丨A 丨. 因此
即
分别为A ,B 的伴随矩阵,
时,
由AB=0, 用
右乘两边,可得A=0, 这与A 卢)矛盾,从而否定B. ,D.
由AB=0,左乘
可得
矛盾,从而否定A ,故选
使AB=0, 则( )
.
3.
设
是3维向量空
间的过渡矩阵为( )
.
到基
的一组基, 则由
基
【答案】(A )
4. 设
则3条直线
(其中
【答案】D 【解析】令其中
则方程组①可改写为
则3条直线交于一点
线性无关,由秩
方程组①有惟一解
)交于一点的充要条件是( )
.
由秩A=2, 可知可由线性表出.
5. 设向量组
可知线性相关,即可由线性表出,
从而
线性相关,故选D.
线性无关,则下列向量组中,线性无关的是( )
【答案】C 【解析】方法1:令
则有
由
线性无关知,
该方程组只有零解方法2:对向量组C ,由于
从而
线性无关,且
因为
所以向量组
线性无关.
线性无关.
二、分析计算题
6. 计算n 阶行列式
【答案】将按第n 列拆分得
对如上第一个行列式第2个行列式按第n 列展开得
相关内容
相关标签