2017年吉林大学半导体物理、量子力学(同等学力加试)之量子力学复试仿真模拟三套题
● 摘要
一、计算题
1. —个自旋为1/2的粒子在三维各向同性的谐振子势中运动,求其基态和第一激发态的能量、波函数和相 应简并度。已知质量为的无自旋粒子在一维谐振子势(频率为)中运动的波函数为基态
第一激发态
【答案】三维各向同性的谐振子可作分离变量求解,分别为三个方向的一维谐振子运动的并合。 基态为三个方向都在基态,加上自旋自由度可得波函数为:
其中,于是可知能量为
为自旋波函数。 简并度等于
因此相应能量为
2. (1)求算符【答案】⑴
即算符⑵则
不对易.
得证.
相应简并度为6。 的对易关系. (2)证明
其中
第一激发态为有一个方向处于第一激发态,故波函数为:
3. 对于自旋的体系,求量
得
的概率和
的本征值和本征态,并在较小的本征值对应的本征态中,求测
的平均值。
设本征态
本征值为则:
【答案】
将代回原方程:
即:
所以,因此有:
同理可得:
的本征态
所以在
态中测量
的几率为:
4. 在自旋向上的状态中,测量有哪些可能的值?这些可能的值各以多大的几率出现? &的平均值是多少?
【答案】(1)自旋角动量在空间任意方向在表象,的矩阵元为:
的投影为:
其相应的久期方程为:
即:利用解得:
可得:
所以,的本征值为(2)设对应于
的本征函数的矩阵表示为则:
由归一化条件,得:
可见,的可能值为而
相应的几率为
5. 设无外势场时,质量为能量为E >0的粒子的状态用球面波描写. 试 (1)导出决定S 波(1=0)波函数的常微分方程; (2)求出所有S 波的球面波波函数;
(3)计算对应于S 波解的速度流矢量并作出图示.[南京大学2009研] 【答案】(1)无外势场可看做有心势场的特殊情况. 则粒子在球坐标系中薛定谔方程为
在s 波情况下,
相关内容
相关标签