当前位置:问答库>考研试题

2016年中南民族大学电子信息工程学院数字信号处理(同等学力加试)考研复试题库

  摘要

一、综合题

1. 已知【答案】

因为

的傅里叶变换对应

的实部,

(n )的傅里叶变换对应

的虚部乘以j , 因此

2. 试画出N=8点的基2DIT -FFT 运算流图。 【答案】8点的基2DIT-FFT 运算流图如下:

分别求出其偶函数

和奇函数

的傅里叶变换。

3. 已知线性因果网络用下面差分方程描述:

(1)求网络的系统函数(2)写出网络频率响应函数(3)设输入【答案】(1)

求输出

及单位脉冲响应

第 2 页,共 41 页

的表达式,并定性画出其幅频特性曲线;

时,c 内有极点

n=0时,c 内有极点

最后得到

(2)

极点为(b )所示。

零点为

极零点图如图 (a )所示。按照极零点图定性画出的幅度特性如图

(3)

4. 一阶IIR 系统的差分方程为

已知在无限精度情况下,这个系统是

式中

表示截尾量化后的结果。

(1)如果信号和乘法器系数都是原码表示的,试问当有限精度实现时,是否存在形式为

第 3 页,共 41 页

稳定的。当在有限精度情况下实现时,对相乘的结果作截尾处理,因此实际的差分方程是

的零输入极限环? 请说明理由。

(2)上述结果对于补码截尾仍然成立吗? 为什么? 【答案】由差分方程可以得到这个系统的系统函数

因此可知

为其极点。由于在无限精度下系统是稳定的,故极点应该在单位圆内,

所以有

(1)根据原码截尾的量化特性,可知,不论x 为正或负,都有

因此有

而实际输出满足差分方程

零输入时,所以上式可以写为

这就是说,当因此不存在

的零输入极限环。

而当

因此上述结果不成立。

5. 对一个连续时间信号进行抽样,抽样时间长度为【答案】根据乃奎斯特抽样定理:

所以最大抽样间隔

其最高频率为

采用

对其进行频

率谱分析,问抽样点间的最大抽样间隔是多少?应作多少点的(2)根据补码截尾的量化特性,当

故有

的抽样时间采2000点,一般取2的幂,所以应作2048点的

第 4 页,共 41 页