2018年贵州大学理学院819物理综合之量子力学教程考研强化五套模拟题
● 摘要
一、简答题
1. 简述波函数和它所描写的粒子之间的关系。
【答案】微观粒子的状态可用一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。 微观粒子的状态波函数则在
用算符的本征函数
展开
态中测量粒子的力学量^
得到结果为
的几率是
得到结果在
范围内的几率
为
2. 写出在【答案】
表象中的泡利矩阵。
二、计算题
3. 求电荷为q 的一维谐振子在外加均匀电场E 中的能级,
哈密顿量为
【答案】记常数,且x ,p 换为
则哈密顿量可时的哈密顿量
对易关系不变,而这不影响原有的能级,所以
4. 设氢原子处于状态
求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值.
【答案】氢原子的定态能量为由氢原子所处的态函数
相比,相差一
所以氢原子能量的取值为角动量平方的取值为角动量z 分量的取值为:
几率1/4,
几率3/4,
其平均值
几率为1,能量的平均值为
几率为1,其平均值为
5. 一粒子在力学量的三个本征函数所张成的三维子空间中运动,其
能量算符
和另一力学量算符的形式如(1)求的本征值和相应的归一化本征矢(用(2)证明的平均值不随时间变化. 【答案】(1)由
令
可得
其中a , b为实数。 表示):
由久期方程可得:解得能量算符的三个本征值
将式中各个值代入式中可以得到
其中k 为
的平均值,而
其中由
为3行的任意列矩阵,则式和
式可知
即的平均值不随时间变化.
6. 设一维粒子的HamiltonianH ,坐标算符为x. 利用利用能量本征态的完全性关系,
将
用
【答案】利用于是
7. 对于角动量算符(b )定义升降算符态,则
也是
可得即
利用对易关系
的本征态.
同理可得则
其
中
是
符号
,
的三个分量之间的关系通式为
:
证明:若f 是
的共同本征
和E. ,表出,其中
是能量本征值为E. ,的本征矢。
(a )在直角坐标系中,推导各分量之间的对易关系,并归纳出统一的表达式.
(c )在球坐标系中,求解的本征方程. 【答案】(a )由
(b )
若f 是则
可见
是
和
的共同本征函数,本征值分别为
代入
的本征方程
得
的共同本征函数,可设
(c )在球坐标中,
利用周期性边界条件
可得