2018年中国矿业大学(北京)理学院803量子力学考研基础五套测试题
● 摘要
一、填空题
1. 波函数的统计解释是:波函数在空间某一点处的_____和在该点扰到粒子的_____成正比。 【答案】强度;几率
2. 在量子力学原理中. 体系的量子态用希尔伯特空间中的_____来描述. 而力学量用_____描述. 力学量算符必为_____算符,以保证其_____为实数.
【答案】函数矢量;张量(一般是二阶张量,即矩阵);厄米;本征值
【解析】希尔伯特空间中的函数矢量对应体系的量子态,力学量对应张量,一般情况下力学量对应二阶张量,也就是矩阵. 力学量算符必须保证其厄米性,否则将导致测量值即其本征值不是实数,这显然不符合事实.
3. (1)自由粒子被限制在x 和x+1处两个不可穿透壁之间,按照经典物理. 如果没有给出其他资料,则粒子在 x 和x+1/3之间的概率是_____. A.025 B.033 C.011 D.067
(2)上题中,按照量子力学. 处于最低能态的粒子在x 和x+1/3之间被找到的概率是_____. A.019 B.072 C.033 D.050
【答案】(1)B
【解析】按照经典力学,粒子处于空间的概率密度为常数,故概率与体积成正比,
即所求概率为
(2)A
【解析】取x 为原点,则有波函数为所求概率即
4. 一质量为的粒子在一维无限深方势阱为_____, 能级表达式为_____。 【答案】
中运动,其状态波函数
二、选择题
5. 角动量算符满足的对易关系为【答案】
6. 量子谐振子的能量是( )
.
【答案】A
【解析】
由于谐振子的哈密顿算符为
7. 正交归一性表示为_____,如果算符是厄米算符,则它满足_____。 【答案】
8. 中心力场中,算符的式子是( ) A. B. C. D. 【答案】C
的共同征函数为
则关于这两个算符的本征值方程正确而
本征值为n ,
于是谐振子能量为
_____,坐标和动量
的对易关系是_____。
三、简答题
9. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
10.何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?
【答案】在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。在弱磁场中,原子发出的
每条光谱线都分裂为
条(偶数)的现象称为正常塞曼效应。原子置于外
电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
四、计算题
11.两个质量为m 的粒子处于一个边长为a >b >c 的,不可穿透的长盒子中. 求下列条件该体系能量最低态的 波函数(只写出空间部分)及对应能量. (1)非全同离子; (2)零自旋全同离子; (3)自旋为1/2的全同离子.
【答案】单粒子在边长a >b >c 的盒子中的定态波函数和定态能量为
(1)当两粒子是非全同离子时,体系能量最低的波函数为
对应能量为
.
(2)对于零自旋全同离子,体系的波函数必须是交换对称的,则体系能量最低的函波数是
对应能量为
.
(3)对于自旋为1/2的全同粒子,体系的波函数必须是交换反对称的. 自旋已知
对应的本征函数有4个:
是交换反对称的,要配对称的空间波函数;
是交换对称的,要配反对称
对应能量为
.
的空间波函数. 所以体系能量最低的态对应的波函数是
相关内容
相关标签