当前位置:问答库>考研试题

2018年中国石油大学(华东)理学院843量子力学考研核心题库

  摘要

一、简答题

1. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数

已知:另一部分

很小,可以看作是加于

它的本征值

上的微扰. 写出在非简并

状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】

一级修正波函数为二级近似能量为

其中

2. 已知为一个算符满足如下的两式么正算符?

【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。

3. 简述波函数的统计解释。

【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

4. —个量子体系处于定态的条件是什么?

【答案】量子体系处于定态的条件是哈密顿算符不显含时间或能量取确定值。

5. 自旋可以在坐标表象中表示吗?

【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

6. 量子力学中的可观测量算符为什么应为厄米算符?

【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。

7. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

第 2 页,共 44 页

问何为厄密算符?何为

为粒子可能处于的态,那么这些态的任意线性组合

8. 写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:

9. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系

物理含义:若两个力学量不对易,则它们不可能同

时有确定的测值。

10.分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

二、计算题

11.在

表象中,

求自旋算符在

表象中的矩阵表示为:

的本征方程为:

a 、b 不全为零的条件是久期方程:

解得:故

的本征值为:时的本征函数为:

时的本征函数为:

第 3 页,共 44 页

方向投影算符

的本征值和相应的本征态。

【答案】在

将本征值代入①式,可得:

12.相互不对易的力学量是否一定没有共同的本征态?试举例加以说明。 【答案】相互不对易的力学量可以有共同的本征态。例

就是它们的共同本征态,本征值皆为

13.已知

【答案】

14.自旋为时,粒子处于(2)求出t >0时

固有磁矩为

的状态。

的可测值及相应的取值几率。

(其中为实常数)的粒子,处于均匀外磁场

中,设t=0

在的本征态下,计算的平均值。

相互不对易,

(1)求出t >0时的波函数; 【答案】(1)体系的哈密顿算符为在泡利表象中,哈密顿算符的本征解为:在t= 0时,粒子处于为了求出

的状态,即

在泡利表象中的具体形式,需要求解满足的本征方程:

解得:于是,有:

由于,哈密顿算符不显含时间,故/>0时刻的波函数为:

(2)因为

所以是守恒量,它的取值几率与平均值不随时间改变,换句话说,只要计

算t=0时的取值几率就知道了t >0时的取值几率。 由于

的取值几率为:

因此有:

第 4 页,共 44 页

故有: