当前位置:问答库>考研试题

2018年中国矿业大学(徐州)理学院858量子力学之量子力学教程考研仿真模拟五套题

  摘要

一、填空题

1. —个电子运动的旋量波函数为

则表示电子自旋向上、位置在处

的几率密度表达式为_____,表本电子自旋向下的几率的表达式为_____。 【答案】

2. 如图所示,有一势场为:

,当粒子处于束缚态时,£的取值范围为_____。

【答案】

3. 描述微观粒子运动状态的量子数有_____; 具有相同n 的量子态,最多可以容纳的电子数为_____个。

【答案】

4. 一粒子的波函数【答案】

则粒子位于

间的几率为_____。

5. 二粒子体系,仅限于角动量涉及的自由度,有两种表象,分别为_____和_____; 它们的力学量完全集分别是_____和_____; 在两种表象中,各力学量共同的本征态分别是_____和_____。 【答案】耦合表象;非耦合表象

6. —粒子的波函数为【答案】

第 2 页,共 43 页

写出粒子位于

间的几率的表达式_____。

7. (1)对于任意的厄米算符,证明其本征值为实数. (2)证明厄米算符属于不同本征值的本征函数彼此正交. (3)对于角动量算符

证明它是厄米算符,并且求解其本征方程.

因为存在

(2)证:因为而(3)因为

所以

即正交

所以

设本征方程为

其中为本征值,上式可改写为

易解出

C 为积分常数,可由归一化条

即为厄米算符。

具有周期性,

所以

即本征值为实

【答案】(1)证:对于厄米算符

件决定. 又因为波函数满足周期性边界条件的限制,

由此可得数记为

即为其本征函数. 相应的本征方程为

8. 试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

第 3 页,共 43 页

即角动量z 分量的本征值为是量子化的,相应本征函

再利用归一化条件可得

9. 在表象中,电子波函数可表示为【答案】式中,波函数

代表

(自旋向上)的状态波函数,

代表

简要说明其物理意义。 (自旋向下)的状态

代表自旋向上的概率

代表自旋向下的概率,归一化表示为

10.已知(1)利用(2)求

的本征态

是泡利矩阵,表象中的表达式,求

可由

的本征态经绕x 轴转动

表象中的本征态矢

试由此

角的坐标变换而得,即

表象的表达式,并与(1)所得结果比较。

【答案】(1)易知:

本征矢

(2)由题意可得:

同理,可得:

可见,两种方法得到的本征态相同。

11.设在平行于y 轴的磁场中,一个电子的哈密顿为旋算符,在t=0时刻,电子处在【答案】粒子的哈密顿量

本征值为

因此定态方程

其中,为自的解为:

的本征态,求以后t 时刻电子所处状态的表示式。

第 4 页,共 43 页