2018年仲恺农业工程学院粮食、油脂及植物蛋白工程314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1.
已知矩阵可逆矩阵P ,使
和
若不相似则说明理由。
试判断矩阵A 和B 是否相似,若相似则求出
【答案】由矩阵A 的特征多项式
得到矩阵A
的特征值是当
时,由秩
知
有2个线性无关的解,即
时矩阵A 有2个线性无关的特征向量,矩阵
A 可以相似对角化,因此矩阵A 和B 不相似。
2.
已知方程组量依次是
(Ⅰ)求矩阵 (Ⅱ
)求【答案】
当a=-1及a=0时,方程组均有无穷多解。 当a=-l时,
则当g=0时,
则值的特征向量.
第 2 页,共 37 页
有无穷多解,矩阵A 的特征值是1, -1, 0, 对应的特征向
的基础解系.
线性相关,不合题意. 线性无关,可作为三个不同特征
由知
(Ⅱ
)
3.
已知
,求
知
的基础解系,
即为
的特征向量
【答案】
令
则且有
1
所以
4.
设二次型
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
记
正交且均为单位向量,证明f
在正交变换下的标准形为
第 3 页,共 37 页
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
故f
在正交变换下的标准形为
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
二、计算题
5. 设向量组B
:
线性表示为
无关的充要条件是矩阵K 的秩R (K )=r.
【答案】
方法一、记
于是
,则有B=AK.(2)
但K 含r 列,
有
即R (K )=r,k 为列满秩矩阵.
必要性:设向量组B 线性无关,知R (B )=r.又由B=AK,
知充分性:设R (K )=r.要证B 组线性无关. 由于
因此,向量组B 线性无关.
方法二、由(2)式,因R (A )=S,A 为列满秩矩阵,则知R (_B)=R(K )。于是B 组线
性无关
6. 求作一个秩是4的方阵,它的两个行向量是(1, 0, 1, 0, 0),(1, -1, 0, 0, 0).
能由向量组A
:
,其中K
为
矩阵,且A 组线性无关. 证明B 组线性
【答案】
因的秩为2,
故满足要求的方阵可以是
7.
设
左乘所给方程两边,
得
又
,注意到
,求B.
因此仍从公式
着手. 为此,用A
右乘上式两边,得
【答案】由于所给矩阵方程中含有A
及其伴随阵
故A 是可逆矩阵,
用
第 4 页,共 37 页