2018年中国人民大学统计学院805统计学之统计学考研仿真模拟五套题
● 摘要
一、简答题
1. 简述统计分组的原则。
【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。
为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。
2. 在什么条件下用正态分布近似计算二项分布的概率效果比较好?
【答案】当样本量n 越来越大时,二项分布越来越近似服从正态分布。这时,二项随机变量的直方图的形状接近正态分布的图形形状。即使对于小样本,当
然相当好,此时随机变量X 的分布是相对于其平均值时,二项分布的正态近似仍
和都对称的。当p 趋于0或1时,二项分布将呈现出偏态,但当n 变大时,这种偏斜就会消失。一般来说, 只要当n 大到使大于或等于5时,近似的效果就相当好。
3. 简述系数、c 系数、系数的各自特点。
【答案】(1)
相关系数是描述列联表数据相关程度最常用的一种相关系数。它的计算公式为:式中,《为列联表中的总频数,也即样本量。说系数适合
这个范围。
列联表的情况。C 系数的列联表,是因为对于
计算公式为:
列联表中的数据,计算出的系数可以控制在(2)列联相关系数又称列联系数,简称c 系数,主要用于大于
当列联表中的两个变量相互独立时,系数c=0, 但它不可能大于1。c 系数的特点是,其可能的最大值依赖于列联表的行数和列数,且随着R 和C 的增大而增大。
(3)克莱默提出了 V 系数。V 系数的计算公式为:
当两个变量相互独立时,当两个变量完全相关时,所以V 的取值在之间。如果列联表中有一维为2,即则V 值就等于值。
4. 简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:
(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。
(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。
(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。
(4)调查员误差,是指由于调查员的原因而产生的调查误差。
(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。
5. 多元线性回归模型中有哪些基本的假定?
【答案】多元回归模型的基本假定有:
(1)自变量
(3)对于自变
量
(4)误差项是一个服从正态分布的随机变量,且相互独立,即
6. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为: 若是根据样本数据计算的,则 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即的所有
值(2)误差项是一个期望值为0的随机变量,即
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
7. 试述统计总体及其特征。
【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。
总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。
8. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
相关内容
相关标签