2018年中国人民大学统计学院805统计学之统计学考研基础五套测试题
● 摘要
一、简答题
1. 给出显著性检验中,P 值的含义,以及如何利用P 值决定是否拒绝原假设。
【答案】P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设。P 值越小,我们拒绝原假设的 理由就越充分。
从研宄总体中抽取一个随机样本,计算检验统计量的值和概率P 值,即在假设为真的前提下,检验统计量大于或等于实际观测值的概率。如果
数取值;如果
即一般以为显著
,结果更倾向于接受假定的参数取值。
为非常显著,其含义是样本间的差异由抽样误差所致的概率
时小于0.05或0.01。但是,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。
样本间的差异比时更大,这种说法是错误的。
2. 回归分析结果的评价。
【答案】对回归分析结果的评价可以从以下四个方面入手:
(1)所估计的回归系数的符号是否与理论或事先预期相一致;
(2)如果理论上认为
归方程也应该如此;
(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;
(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进行?检验时,
都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的
简单方法是画出残差的直方图或正态概率图。
3. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?
【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,
说明是较强的判定结果,拒绝假定的参说明说明是较弱的判定结果,拒绝假定的参数取值;如果之间的关系不仅是正的,而且是统计上显著的,那么所建立的回
就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。
4. 解释多元回归模型、多元回归方程、估计的多元回归方程的含义。
【答案】(1)多元回归模型:设因变量为个自变量分别为描述因变量y 如何依赖于自变量和误差项的方程称为多元回归模型。其一般形式可表示为
:式中(2)多元回归方程:
根据回归模型的假定有
方程,它描述了因变量y 的期望值与自变量
(3)估计的多元回归方程:
回归方程中的参数
数据去估计它们。当用样本统计
量
时,就得到了估计的
多元回归方程,其一般形式为:
式中是参数称为偏回归系数。
5. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布则则 的估计值是因变量y 的估计值。其中
之间的关系。 是未知的,需要利用样本去估计回归方程中的未知参
数是模型的参数为误差项。 称为多元回归
6. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?
【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行
的检验,如果次不同每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免
拒绝一个真实的原假设。
方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。
7. 什么是抽样平均误差?影响抽样平均误差的因素有哪些?
【答案】抽样平均误差是指抽样平均数(或抽样成数)的标准差。它反映抽样平均数(或抽样成数)与总体平均数(或总体成数)的平均误差程度。
影响抽样平均误差的因素有四个:
(1)样本单位数目。在其他条件不变的情况下,抽样数目越多,抽样误差越少;抽样数目越少,抽样误差越大。当时,就是全面调查,抽样误差此时为零。
(2)总体标志变动程度。其他条件不变的情况下,总体标志变异程度越大,抽样误差越大;总体变异程度越小,抽样误差越小。
(3)抽样方法。一般讲,不重复抽样的抽样误差要小于重复抽样的抽样误差。当n 相对N 非常小时,两种抽样方法的抽样误差相差很小,可忽略不计。
(4)抽样组织方式。采用不同的抽样组织方式,也会有不同的抽样误差。一般讲分层抽样的抽样误差较小,而整群抽样的抽样误差较大。
8. 概述相关分析与回归分析的联系与区别。
【答案】(1)相关分析和回归分析的联系
它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。
(2)相关分析和回归分析的区别
①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预测因变量的平均值。
②从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分自变量和因变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是在变量因果关系分析的基础上研宄其中的自变量的变动对因变量的具体影响,必须明确划分自变量和因变量,所以回归分析中对变量的处理是不对称的,在回归分析中通常假定自变量在重复抽样中是取固定值的非随机变量,只有因变量是具有一定概率分布的随机变量。