2018年中央财经大学统计与数学学院396经济类联考综合能力之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
矩阵
且A 可对角化,
求行列式
逆
其中E 是n 阶单位矩阵.
使或1.
2. 已知A
是
矩阵,齐次方程组
的基础解系是
与
有非零公共解,求a 的值并求公共解.
知
的解.
对
贝腕阵
又知齐
次方程组Bx=0
的基础解系是
(Ⅰ)求矩阵A ;
(Ⅱ
)如果齐次线性方程组
【答案】(1
)记
A
的行向量)是齐次线性方程组
由
的列向量(即矩阵
作初等行变换,有
得到
的基础解系为
所以矩阵
则既可由
线性表出,也可
(Ⅱ)设齐次线性方程组Ajc=0与Sx=0
的非零公共解为由
对
线性表出,
故可设
作初等行变换,有
于是
不全为
当a=0时,
解出
因此,Ax=0与Bx=0
的公共解为
3.
设三维列向量组
(Ⅱ)
当
【答案】(Ⅰ)由于4
个三维列向量全为0
的数
又向量组记
和向量组向量
线性表示.
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
使得
线性无关;
向量组
则
构成的向量组一定线性相关,故存在一组不即,
线性无关,故
不全为0
,
即存在非零列向量
不全为0.
使得
可同时由向量组
线性无关,
列向量组
线性无关.
和向量组
线性表示;
其中t 为任意常数.
(Ⅰ
)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为
_意非零常数.
因此,
所有非零列向量
所有非零解
_
t 为任
4.
设二次型
(1)证明二次型f
对应的矩阵为(2
)若
【答案】(1)由题意知,
记
正交且均为单位向量,证明f
在正交变换下的标准形为
故二次型/
对应的矩阵为(2)证明:
设则
而矩阵A
的秩
故f
在正交变换下的标准形为
,由于
所以
为矩阵对应特征值所以
为矩阵对应特征值
所以
的特征向量;
的特征向量; 也是矩阵的一个特征值;
二、计算题
5. 设A , B 都是n 阶矩阵,且A 可逆,证明AB 与BA 相似.
【答案】因A 可逆,
故
6.
设
证明A 的特征值只能取1或2.
是
的特征值. 但是,零矩阵只有特征值由定义,AB 与BA 相似.
【答案】设A 是A 的特征值,
则0,
故则A=1或A=2.
7. 非齐次线性方程组
当λ取何值时有解? 并求出它的通解.
【答案】这里系数矩阵A 是方阵,但A 中不含参数,故以对增广矩阵作初等行变换为宜,求
相关内容
相关标签