当前位置:问答库>考研试题

2018年中央财经大学统计与数学学院396经济类联考综合能力之工程数学—线性代数考研仿真模拟五套题

  摘要

一、解答题

1. 设B

(I

)证明(II

)证明(III

)若【答案】⑴

(II )

(Ⅲ)设

则由

或1. 又存在可逆矩阵p ,

矩阵

且A 可对角化,

求行列式

其中E 是n 阶单位矩阵.

使或1.

2. 已知A

矩阵,齐次方程组

的基础解系是

有非零公共解,求a 的值并求公共解.

的解.

贝腕阵

又知齐

次方程组Bx=0

的基础解系是

(Ⅰ)求矩阵A ;

(Ⅱ

)如果齐次线性方程组

【答案】(1

)记

A

的行向量)是齐次线性方程组

的列向量(即矩阵

作初等行变换,有

得到

的基础解系为

所以矩阵

则既可由

线性表出,也可

(Ⅱ)设齐次线性方程组Ajc=0与Sx=0

的非零公共解为由

线性表出,

故可设

作初等行变换,有

于是

不全为

当a=0时,

解出

因此,Ax=0与Bx=0

的公共解为

3.

设三维列向量组

(Ⅱ)

【答案】(Ⅰ)由于4

个三维列向量全为0

的数

又向量组记

和向量组向量

线性表示.

所有非零解,即可得所有非零

的系数矩阵A 施行初等行变换化为行最简形:

使得

线性无关;

向量组

构成的向量组一定线性相关,故存在一组不即,

线性无关,故

不全为0

,

即存在非零列向量

不全为0.

使得

可同时由向量组

线性无关,

列向量组

线性无关.

和向量组

线性表示;

其中t 为任意常数.

(Ⅰ

)证明存在非零列向量

使得

可同时由向量组

时,

求出所有非零列向量

(Ⅱ)易知,

求出齐次线性方程组下面将方程组

于是,方程组的基础解系可选为

_意非零常数.

因此,

所有非零列向量

所有非零解

_

t 为任

4.

设二次型

(1)证明二次型f

对应的矩阵为(2

)若

【答案】(1)由题意知,

正交且均为单位向量,证明f

在正交变换下的标准形为

故二次型/

对应的矩阵为(2)证明:

设则

而矩阵A

的秩

故f

在正交变换下的标准形为

,由于

所以

为矩阵对应特征值所以

为矩阵对应特征值

所以

的特征向量;

的特征向量; 也是矩阵的一个特征值;

二、计算题

5. 设A , B 都是n 阶矩阵,且A 可逆,证明AB 与BA 相似.

【答案】因A 可逆,

6.

证明A 的特征值只能取1或2.

的特征值. 但是,零矩阵只有特征值由定义,AB 与BA 相似.

【答案】设A 是A 的特征值,

则0,

故则A=1或A=2.

7. 非齐次线性方程组

当λ取何值时有解? 并求出它的通解.

【答案】这里系数矩阵A 是方阵,但A 中不含参数,故以对增广矩阵作初等行变换为宜,求