2018年中央财经大学金融学院396经济类联考综合能力之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1. 设二次
型
(Ⅰ)用正交变换化二次型(Ⅱ
)求【答案】
(Ⅰ)由
知,矩阵B 的列向量是齐次方程组Ax=0的解向量.
为标准形,并写出所用正交变换;
矩阵A 满足AB=0, 其
中
记
值(至少是二重)
,
根据
值是0, 0, 6.
设
有
对
正交化,
令的特征向量为
有
则是
的线性无关的特征向量.
由此可知
,是矩阵A 的特征
故知矩阵A
有特征值因此,矩阵A 的特征
那么由实对称矩阵不同特征值的特征向量相互正交,
则
解出
再对,单位化,得
那么经坐标变换
即
二次型化为标准形(Ⅱ)因为
又
有
所以由
进而
得
线性无关.
和向量组
线性表示;
于是
2.
设三维列向量组
(Ⅱ)
当
【答案】(Ⅰ)由于4
个三维列向量全为0
的数
又向量组记
和向量组向量
线性表示.
使得
线性无关;
向量组
则
线性无关,
列向量组
(Ⅰ
)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
构成的向量组一定线性相关,故存在一组不即,
线性无关,故
不全为0
,
即存在非零列向量
不全为0.
使得
可同时由向量组
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为
_意非零常数.
因此,
所有非零列向量
3. 设n 维列向
量
【答案】
记
线性无关,其中S 是大于2的偶数. 若矩
阵
试求非齐次线性方程组
的通解.
方程组①化为:
所有非零解
_
t 为任
整理得
,由
线性无关,得
显然①与②同解.
下面求解②:对②的增广矩阵作初等行变换得(注意X 是偶数)
从而组的基础解系为数.
4. 设A
为
的解为【答案】
由
利用反证法,
假设以有
解矛盾,故假设不成立,
则
由
.
得
有无穷多解.
易知特解为
从而②的通解,
即①的通解为
对应齐次方程
A 为任意常
矩阵
且有唯一解. 证明:
矩阵为A 的转置矩阵).
易知
为可逆矩阵,
且方程组
只有零解.
使
.
所
只有零
有惟一解知
则方程组
. 即
即有
可逆.
有非零解,即存在
于是方程组
有非零解,这与
二、计算题
5. 设AP=PA,
其中
求
【答案】
因
故P 是可逆阵. 于是,由AP=PA
得
有因于是
是三阶对角阵,
故
并且记多项式
相关内容
相关标签