当前位置:问答库>考研试题

2017年长安理工大学数理统计(同等学力加试)复试仿真模拟三套题

  摘要

一、计算题

1. 在一个单因子试验中,因子A 有三个水平,每个水平下各重复4次,具体数据如下:

试计算误差平方和因子A 的平方和与总平方和并指出它们各自的自由度.

【答案】此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:

误差平方和

由三个平方和组成:

于是

2. 设随机变量X 与Y 相互独立, 其联合分布列为

试求联合分布列中的a , b , c.

【答案】先对联合分布列按行、按列求和, 求出边际分布列如下:

由X 与Y 的独立性, 从上表的第2行、第2列知6=(6+4/9)(6+1/9), 从中解得b=2/9, 再从上表的第2行、第1列知知:

由此得c=1/6.

3. 掷两颗骰子,求下列事件的概率:(1)点数之和为6;(2)点数之和不超过6;(3)至少有一个6点.

【答案】

从中解得a=1/18, 最后由联合分布列的正则性

A=“点数之和为6”=B=“点数之和不超过6”

C=“至少有一个6点”

所以(1)P (A )=5/36;(2)P (B )=5/12;(3)P (C )=11/36.

4. 40种刊物的月发行量如下(单位:百册):

(1)建立该批数据的频数分布表, 取组距为1700百册; (2)画出直方图.

【答案】此处数据最大观测值为14667, 最小观测值为353, 由于组距为1700, 故组数为

所以分9组. 接下来确定每组区间端点, 要求

此处可取

于是可列出其频数频率分布表.

其直方图为

5. 某地区漏缴税款的比率X 服从参数a=2,b=9的贝塔分布,试求此比率小于10%的概率及平均漏缴税款的比率.

【答案】贝塔分布Be (2,9)的密度函数为

因为

所以

6. 一赌徒认为掷一颗骰子4次至少出现一次6点与掷两颗骰子24次至少出现一次双6点的机会是相等的,你认为如何?

【答案】设事件A 为“颗骰子掷4次,至少出现一次6点”,则. 为“一颗骰子掷4次,不出现6点”,于是

又设事件B 为“两颗骰子掷24次,至少出现一次双6点”,则瓦为“两颗骰子掷24次,不出现

因此