2017年暨南大学量子力学,固体物理,热力学与统计物理之量子力学复试实战预测五套卷
● 摘要
一、计算题
1. 设
是
(1)计算(2)计算
并将结果表示为三个泡利矩阵的线性组合(要求给出组合系数)。 的本征态
试证该态与的方向无关,即由不同得到
方向的单位矢量,在表象中
,
(3
)设两电子自旋态为的态最多相差相因子。 【答案】⑴
(2)设的本征值为,本征矢为
则:
解久期方程将
,可得:
分别代入本征方程,得到与对应的本征矢为:
与对应的本征矢为:
表示为:
(3)利用矩阵直积的知识,可将
因此,对任意
倍。得证
得到的与态只相差
2. 两个互作用可以忽略的电子在一维线性谐振子势场中运动,写出系统基态和第一激发态的总波函数。
【答案】单电子波函数的空间部分:
二电子总波函数应为反对称: 基态:第一激发态:
3. 已知(1)利用(2)求
在
的本征态
在
是泡利矩阵,表象中的表达式,求
在
可由
的本征态经绕x 轴转动
表象中的本征态矢
试由此
角的坐标变换而得,即
表象的表达式,并与(1)所得结果比较。
【答案】(1)易知:
设
本征矢
则
即
(2)由题意可得:
同理,可得:
可见,两种方法得到的本征态相同。
4. 设质量为m 的粒子处于势场的本征波函数
也属于正幂次级数,故有定态方程
式中:
则I 式可以化为:令
上方程可化简为
式解得
5. 已知
则
分别为电子的轨道角动量和自旋角动量,
证明
是
的本征态,并就
中,K 为非零常数. 在动量表象中求与能量E 对应
【答案】显然势场不含时,属于一维定态问题,而
其中C 为归一化常数。 为电子的总角动量。(
)
的共同本征态为相应的本征值。 【答案】
两种情况分别求出其
相关内容
相关标签